

Welbee The Short Arc 350

はじめに

このたびは、ダイヘンの溶接電源をお買い上げいただきありがとうございます。 この取扱説明書(以降、本書と呼びます)は、本製品を安全に取り扱えるように、次の事項について記載されていま す。

- 本製品に関する注意事項
- 操作方法 / 設定方法
- 日常的な保全事項(清掃、点検)
- トラブルシューティング

本書をお読みになったあとは、保証書とともに関係者がいつでも見られる場所に大切に保管してください。

本取扱説明書の電子データは弊社ホームページよりダウンロードすることができます。 https://www.daihen.co.jp/products/welder/manual/

アフターサービスについて

保守点検 / 修理のご用命は、最寄りの販売店もしくは弊社営業センターまでご連絡ください。 お問い合わせ先の詳細については、本書の裏表紙をご覧ください。なお、ご連絡時には、次のことをお知らせ願いま す。

- お客様のお名前、所在地、および電話番号
- 溶接電源の形式、製造年、製造番号、およびソフトウェアバージョン (下図を参考に製品情報を確認してください。銘板の貼付位置および記載内容は、ご購入頂いた溶接電源によって 異なる場合があります。)

< 例> 銘板の貼付位置

番号	銘板の内容			
1	•	QRコード	(読み取ることで、製造番号や製造年の確認、取扱説明書等にアクセスできます)	
	•	形式	XX-X###X	
2	•	製造年	#### 年	
	•	製造番号	#X#####X #############	
3	•	ソフトウェ	ニアバージョン	
			X##### Ver ###.###.###.###	

重要なお知らせ

製品の用途について

本製品は、アーク溶接を行うための電源装置として設計・製作されています。 本製品を他の目的で使用しないでください。

安全にご使用いただくために

本製品(以降、溶接電源と呼びます)を安全にご使用いただくために、次のことをお守りください。

- 本書は、本書に記載された言語を理解できる人を対象に作成しています。この言語を理解できない人に溶接電源の 取り扱いをさせる場合は、お客様の責任で作業者に安全教育と取り扱い指導を徹底してください。
- 本書は、アーク溶接作業に従事した経験のある人を対象に説明しています。未経験の人は、「アーク溶接特別教育」 を受講し、この講習を修了してください。
- 人身事故や器物の損傷を防止するため、ご使用になる前に、必ず本書をよくお読みいただき、記載されている内容 をお守りください。また、本書に記載されていないことは、行わないでください。
- 溶接電源や溶接機の設置 / 操作 / 保全作業は、安全な取り扱いができる有資格者や、知識と技能のある人が行って ください。
- 安全教育に関しては、溶接学会 / 溶接協会、溶接関連の学会 / 協会の本部・支部主催の各種講習会、または溶接関連の各種資格試験などをご活用ください。
- 本書に不備が発見された場合は、速やかに販売店もしくは弊社営業センターまでご連絡ください。

保証と免責について

溶接電源の保証 / 免責内容は、保証書に記載されています。保証書をご覧ください。

(保証登録票は、必要事項をご記入の上、必ず弊社まで返却してください。返却がない場合は、弊社のアフターサービスを受けられなくなることがあります。)

著作権について

本書の著作権は弊社が所有しています。弊社の許可なしに本書の内容を転載、盗用することは禁じられています。

国外に持ち出す場合について

溶接電源を国外に持ち出す場合は、次の点をご理解の上、適切に対処してください。

- 本製品および製品の技術(ソフトウェアを含む)は「キャッチオール規制対象貨物など」に該当します。輸出する 場合には、関係法令に従った需要者・用途などの確認を行い、必要な場合は経済産業大臣の輸出許可申請など適正 な手続きをお取りください。
- 溶接電源は、日本国内の法令 / 規格や基準に基づいて設計・製作されています。そのままの状態では、他国の法令 / 規格や基準に適合しないことがあります。
- 本製品を国外に移転または転売される場合は、必ず事前に販売店もしくは弊社営業センターまでご相談ください。

製品の廃棄について

溶接電源を含む溶接機器、および溶接資材などの廃棄については、活動する国・地域における法令を確認し、その内容 に則ってください。廃棄する場合は、認可を受けた専門業者と廃棄処理委託契約を締結し、廃棄処理を委託してください。

目 次

	重	要なお知らせ	1
		製品の用途について 安全にで使用いただくために	1 1
		保証と免責について	1
		者作権につい(国外に持ち出す場合について	1 1
		製品の廃棄について	1
第1	章	安全について	
1.1	警	告表示の記載について	4
1.2	安	全上の注意	4
1.2.1)	使用上の注意	4
1.2.2	5	電源のより窓電の注意 樹脂部品に関する注意	5 5
1.2.4	ŀ	溶接電源の分解 / 改造に関する注意	5
1.2.6	5	保護具に関する注意	6
1.2.7	2	可燃物に関する注意ガスボンベお上びガス流量調整に関する注意	7
1.2.9)	回転部に関する注意	9
1.3	安	全に関する法規について	8
1.3.1		据付け(設置)/ 操作 / 保守点検 / 修理に関する 関連法目・資格たど	8
1.3.2	2	保護具等の関連規格	8
第 2	章	製品の仕様と構成	
2.1	仕	様	9
2.1.1	,	仕様	9
2.1.2	5	使用可能な浴接法 外形図	10
2.1.4	ŀ	使用率について	11
2.2	製	品の構成	.12
2.2.1	,	標準構成品 付属品	12
2.2.2	5	お客様にご用意いただくもの	14
2.2.4		別売品	14
2.3	谷	部の名称 - フロントパラル	.16
2.3.1)	リアパネル	16
第3	章	運搬と設置	
3.1	必	要な設備について	.17
3.1.1)	電源設備	17
3.2	設情	環境について 	.18
3.2.1		₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	18
3.2.2) - 	電磁障害について	19
3.3	連	職作業手順	.19
3.3.1	2	市り上り装直による連載 手押しや人力による運搬	19 20
第4	章	接続	
4.1	接	続および接地作業の注意	.21
4.2	接	続手順	.21
4.2.1	,	出力側ケーブルの接続	22
4.2.2 4.2.3	3	ンコ バ	23 24
4.2.4	ŀ	母材側電圧検出ケーブルの接続	24
4.2.3 4 २	, 按·	ッ ルトリスの 技術 加 と 入 力 雷 頂の 培続	2ð 70
4.4	接	るこう、うてであった。 続会ての確認作業	30
45	白	動機との接続	30
4.5.1		= 1102	30

4.5.2	2 外部接続用端子への接続	.31
第 5	章 溶接作業	
5.1	溶接前の確認事項	33
5.2	電源投入とガス供給	34
5.3	ワイヤのインチング	35
5.4	溶接条件の確認と設定	37
5.4.1 5.4.2	溶接条件の読み出し 2 操作パネルの誤操作防止	.37 .37
5.5	溶接作業の実施	39
5.5.1	溶接開始の操作 溶接中の操作	.39 40
5.5.3	- ////////////////////////////////////	.41
第6	章 溶接条件	
6.1	溶接条件リスト	42
6.1.1	パラメータ(溶接パラメータ)	.42 42
6.1.3	3 内部機能(ファンクション)	.42
6.2	操作パネルの機能	46
6.2.1	操作パネル	.46 47
6.2.3	 シックアバネルの金本珠(F	.48
6.3	溶接条件について	52
6.3.1	基本的な溶接条件 通利た使い方	.52
6.4	溶接条件の作成ガイド	53
6.5	溶接条件のメモリ機能	53
6.5.1	溶接条件一覧画面の基本構成	.54
6.5.2	2 メモリ機能	.55
6.0	浴送余件の設定	60
6.6.2	2 溶接モードの設定	.60
6.6.3	3 溶接パラメータの設定	.62
6.6.4	ト クレータの設定 マークスポットの設定	.65
6.6.6	5 アークスホットの設定 5 溶接電圧の調整	.70
6.6.7	7 アーク特性の調整	.71
6.6.8	3 溶込制御の調整	.72
0.0.9 6.6.1	ゥ	.73 .74
6.7	内部機能の設定	75
6.7.1	内部機能の設定方法	.75
6.7.2	2 谷内部機能の詳細	.78
6.8	アテロクリモコン(別売品)の猓作	97
第7	章 管理者機能	

7.1 溶	接条件の保護	99
7.1.1	パスワードの設定 / 変更	
7.2 溶	接管理機能	101
7.2.1	溶接管理機能の設定	
7.2.2	溶接管理項目の詳細	
7.3 デ	ータのバックアップ(データの活用)	107
7.3.1	溶接条件 / 内部機能(ファンクション)設定に	
	ついて	107
7.3.2	簡易データログ機能について	109
7.3.3	異常ログ機能について	109
7.3.4	溶接管理機能について	110
7.3.5	バックアップ操作	110
7.3.6	バックアップデータの読み込み操作	111
7.4 溶	接条件と内部機能の初期化	112

目 次

7.5 シ	ステム設定	113
7.5.1	ソフトウェアバージョンおよび製造番号の確認.	
7.5.2	ティスフレイの明るさ	114
7.6 校	正モード	115
7.6.1	出力電流の調整方法	115
7.6.2	出力電圧の調整方法	116
7.7 タ	ッチパネルの言語切替	117

第8章 保守点検

8.1	保守点検に関する注意	118
8.2	日常点検	119
8.3	定期点検	120
8.4	定期交換部品について	121

8.5 絶縁抵抗測定および耐電圧試験について 122

第9章 トラブルシューティング

9.1	エラー発生時の対処	123
9.2	トラブルシューティング	125

第10章 資料

10.1 パ	ーツリスト	
10.2 参	考図面	
10.2.1 10.2.2	電気接続図 部品配置図	
10.3 溶	接条件設定資料	
10.3.1 10.3.2	溶接条件の変更ガイド 溶接条件の設定サンプル	
10.4 関	係法規(抜粋)	
10.4.1 10.4.2 10.4.3 10.4.4	電気設備の技術基準の解釈 労働安全衛生規則 粉じん障害防止規則 特定化学物質障害予防規則(特(

第1章 安全について

本章では、溶接電源や溶接に関する注意事項について説明します。

1.1 警告表示の記載について

本書では、溶接電源を安全に正しくお使いいただき、あなたや他の人々への危害、および財産への損害を未然に防止する ために、様々な警告表示を用いて説明しています。その表示と意味は、次のとおりです。 記載された内容をよく理解の上、必ずお守りください。

次の表示は、危険や損害の程度を区分して警告します。

表示	内容
⑦ 危 険	誤った取り扱いをすると、危険な状態が起こる可能性があり、人が死亡または重傷を負う 危険性がある内容を示しています。
▲ 注 意	誤った取り扱いをすると、人が中程度の負傷や軽傷を負う可能性がある内容、物的損害の 発生が想定される内容を示しています。

次の表示は、お守り頂く内容を絵記号で区分しています。

表示	内容
0	強制:しなければならない内容を示しています。必ずお守りください。
\otimes	禁止:してはいけない内容を示しています。必ずお守りください。

1.2 安全上の注意

本項では、溶接電源に関する注意事項について説明します。

1.2.1 使用上の注意

重大な人身事故を防止するため、必ず次の事項をお守りください。

◆ 危 険

- 溶接電源をご使用になる前に、必ず本書をよくお読みいただき、記載されている内容 をお守りください。また、溶接電源や溶接機の操作は、安全な取り扱いができる知識 と技能のある人が行ってください。(371.3安全に関する法規について)
- 設備側の1次電源工事、設置場所の選定、高圧ガスの取り扱い/保管/配管、溶接後の製造物の保管、および廃棄物の処理などは、法規やお客様の社内基準に従ってください。
- 溶接作業中は、溶接機や溶接作業場所の周囲に、人が不用意に立ち入らないように対 策してください。
- 溶接電源の設置、および保守点検や修理は、有資格者または溶接機をよく理解した人が行ってください。(☞ 1.3 安全に関する法規について)
- 高所作業時は、安全帯を正しく装着してください。
- ・ 心臓のペースメーカを使用している人は、医師の許可があるまで操作中の溶接機や溶 接作業場所に近づかないでください。溶接機の通電中は、周囲に磁場を発生させるた め、ペースメーカの作動に悪影響を及ぼします。
- 凍結したパイプを解凍するなど、溶接以外の用途に使用しないでください。
- 溶接電源のケースやカバーを取り外した状態では、使用しないでください。
- 保守点検や修理などでケースを取り外す必要がある場合は、有資格者または溶接機を よく理解した人が行ってください。また、保守点検や修理作業中は、溶接機の周囲に 囲いをするなどし、不用意に他の人が近づけないように対策してください。

第1音

安全について 安全上の注意

1.2.2 電源および感電の注意

感電や火傷を防止するため、必ず次の事項をお守りください。

険

- 溶接電源の入力端子、出力端子および内部の帯電部に触れないでください。
- 溶接電源のケース、母材、および母材と電気的に接続された治具などは、電気工事士の資格を有する人が法規に従い接地工事を行ってください。(③ 電気設備技術基準 第 15条)
- 設置や保守点検は、必ず溶接電源を接続している配電箱の開閉器により入力電源を遮断し、3分以上が経過したあとに作業を開始してください。
 また、入力電源を遮断しても、コンデンサには充電されていることがあります。必ず充電電圧がないことを確認し、作業を開始してください。
- 保護手袋は、常に乾いた絶縁性のよいものを使用してください。破れたり濡れた手袋は、使用しないでください。
- ケーブルの接続部は、確実に締め付けて絶縁してください。
- 保守点検は定期的に実施し、損傷した部分は修理してからご使用ください。
- 使用していないときは、すべての装置の電源を遮断してください。
- ・ 定期的に湿気の少ない圧縮空気を溶接電源の各部に吹きつけ、チリやほこりを除去して ください。
 - 内部に堆積した粉じんを放置すると、絶縁劣化を起こし、感電や火災の原因になります。
- 容量不足のケーブル、および損傷や導体がむき出したケーブルは、使用しないでください。

▲ 注 意

 溶接電源の電源スイッチがトリップした場合は、絶対に再投入せず、販売店もしくは 弊社営業センターまでご連絡ください。

1.2.3 樹脂部品に関する注意

溶接電源のフロントパネルやリアパネル、ファンは、ポリカーボネート樹脂で製作されています。樹脂部品の損傷に伴う感電や火災を防止するため、必ず次の事項をお守りください。

③ 危 険

- フロントパネルやリアパネルに外力や衝撃を与えないでください。
 破損や故障の原因になります。
- 樹脂部品が汚れた場合は、水、アルコールまたは中性洗剤を柔らかい布に浸し、よく 絞ってから拭いてください。
 有機溶剤や化学薬品は、使用しないでください。クラック(割れ)や強度低下の原因 につながります。
- フロントパネルやリアパネルなどの樹脂部品に異常が発見された場合は、直ちに使用 を中止し、販売店もしくは弊社営業センターまでご連絡ください。
- 溶接電源を有機溶剤、化学薬品、切削油、または合成油などが付着する場所、および これらが大気中に含まれる場所で使用しないでください。
 樹脂部品のクラック(割れ)や強度低下の原因になります。

1.2.4 溶接電源の分解 / 改造に関する注意

感電や火災、誤動作による負傷、および溶接電源のトラブルを防止するため、必ず次の事項をお守りください。

⑦ 危 険

溶接電源の分解 / 改造はしないでください。 お客様による分解 / 改造は、保証の範囲外です。

1.2.5 排気および呼吸用保護具の注意

溶接作業時の酸素欠乏やガス中毒を防止するため、必ず次の事項をお守りください。

⑦ 危 険

- 酸素欠乏症等防止規則で規定する場所(タンク、ボイラー、反応塔および船倉の内部、 閉塞された空間、その他通風が不十分な場所など)の場合は、この規則に準拠した換 気設備を設置してください。
- 炭酸ガスやアルゴンガスなど、酸素よりも比重の重たいガスは底部に滞留します。底部における酸素濃度が規定値を満たす換気設備を設置してください。
- 換気設備の設置が困難な場合や換気設備の能力が不十分な場合は、必ず空気呼吸器などを着用してください。
- 酸素欠乏症により転落する恐れがある場合は、安全帯を装着してください。
- 狭い場所での溶接作業は、訓練された監視員の監視のもとで行ってください。
- 換気設備は、必ず酸素欠乏症等防止規則に従い点検し、溶接作業場所の酸素濃度が規 定値を満たすことを確認してください。

溶接作業時に発散する有害ガス、および粒子状物質(ヒューム)などの汚染物質による健康障害を防止するため、必ず 次の事項をお守りください。

⑦ 危 険

- 粉じん濃度低減のため、労働安全衛生規則や粉じん障害防止規則、特定化学物質障害
 予防規則、作業環境測定施行規則に準拠したヒューム吸引装置等の局所排気設備を設置するか、全体換気設備を設置してください。
- 局所排気設備の設置が困難な場合や、換気、排気設備の能力が不十分な場合は、必ず 呼吸用保護具などを着用してください。呼吸用保護具は、より防護性能の高い電動 ファン付きのものを推奨します。継続して屋内で溶接作業をする場合、年1回の フィットテストが必要です。(粉塵障害防止総合対策)
- 金属アーク溶接を行う場合は、特定化学物質作業主任者の選任が必要になります。
- 被覆鋼板や亜鉛メッキ鋼板の溶接・切断では、局所排気設備を設置するか、溶接作業 者だけでなく周囲の作業者も含め、呼吸用保護具を着用してください。(被覆鋼板や亜 鉛メッキ鋼板を溶接・切断すると、有害なガスやヒュームが発生します。)
- 脱脂 / 洗浄 / 噴霧作業の近くでは、溶接作業をしないでください。これらの場所の近く で溶接作業を行うと、有害ガスが発生することがあります。

1.2.6 保護具に関する注意

溶接で発生するアーク光、飛散するスパッタやスラグ、および騒音による聴覚障害を防止するため、必ず次の事項をお 守りください。(14971.3 安全に関する法規について)

- 溶接作業場所およびその周囲では、十分な遮光度を有する遮光めがね、または溶接用 保護面を着用してください。
 - 上記をお守り頂けない場合、アーク光による目の炎症や火傷の恐れがあります。
- 溶接作業場所およびその周囲では、保護めがねを着用してください。
 上記をお守り頂けない場合、飛散するスパッタやスラグにより目を傷めたり火傷の恐れがあります。
- 溶接作業時は、溶接用かわ製保護手袋、長袖の服、脚カバー、およびかわ製の前かけ などの保護具を着用してください。
 上記をお守り頂けない場合、感電や火傷の恐れがあります。
- 溶接作業場所の周囲は、アーク光が他の人々の目に入らないように、保護幕などを設置してください。
- 溶接作業場所の騒音が高いときは、防音保護具を着用してください。
 上記をお守り頂けない場合、聴覚障害につながる恐れがあります。

第1章

安全について 安全上の注意

1.2.7 可燃物に関する注意

火災や爆発、および破裂を防止するため、必ず次の事項をお守りください。

- ① 危 険
- 飛散するスパッタが可燃物に当たらないように、可燃物を取り除いてください。取り 除けない場合は、可燃物を不燃性カバーで覆ってください。
- ・ 天井 / 床 / 壁などの溶接では、隠れた側にある可燃物を取り除いてください。
- ケーブルの接続部は、確実に締め付けて絶縁してください。
 ケーブルの不完全な接続部、および鉄骨などの母材側電流経路に不完全な接触部がある場合は、通電による発熱で火災につながる恐れがあります。
- 母材側ケーブルは、できるだけ溶接する箇所の近くに接続してください。
- 内部にガスが入ったガス管や密閉されたタンクやパイプを溶接しないでください。
- ガソリンなど可燃物用の容器にアークを発生させると、爆発する恐れがあります。また、密閉されたタンクやパイプなどを溶接すると、破裂する恐れがあります。
- 溶接作業場所の近くに消火器を配し、万一の場合に備えてください。
- 定期的に湿気の少ない圧縮空気を溶接電源の各部に吹きつけ、チリやほこりを除去してください。内部に堆積した粉じんを放置すると絶縁劣化を起こし、感電や火災の原因になります。
- 溶接直後の熱い母材を可燃物に近づけないでください。
 スパッタや溶接直後の熱い母材は、火災の原因になります。
- 可燃性ガスの近くでは、溶接をしないでください。
- 溶接トーチをワイヤ送給装置、ワイヤリールスタンドのフレームに近づけないでください。
- ワイヤ送給装置、ワイヤリールスタンドのフレームと母材間などに導通がある場合は、 ワイヤ、フレームまたは母材に接触するとアークが発生し、焼損や火災につながる恐れがあります。

1.2.8 ガスボンベおよびガス流量調整に関する注意

ガスボンベの転倒やガス流量調整器の破裂、およびガス事故を防止するため、必ず次の事項をお守りください。

⑦ 危 険

- ガスボンベは、法規および貴社の社内基準に従い取り扱ってください。 ガスボンベには、高圧ガスが封入されています。取り扱いを誤ると高圧ガスが吹き出 し、人身事故につながる恐れがあります。
- ガスボンベは、専用のガスボンベ立てに固定してください。
 ガスボンベが転倒すると、人身事故につながる恐れがあります。
 ガスボンベのバルブを開けるときは、吐出口に顔を近づけないでください。
- ・ ガスボンベを使用しないときは、必ず保護キャップを取り付けてください。
- ガスボンベを高温にさらさないでください。
- ガスボンベに溶接トーチを掛けたり、電極がガスボンベに触れないように注意してく ださい。
- ガス流量調整器は、使用するシールドガスに適合した高圧ガスボンベ用のものを必ず 使用してください。
 - 不適切なガス流量調整器を使用した場合は、破裂する恐れがあります。
- ガス流量調整器は、使用する前にガス流量調整器の取扱説明書をよくお読みいただき、 注意事項をお守りください。
- ガス流量調整器を分解しないでください。分解 / 修理には、専門知識が必要です。
 ガス流量調整器に不具合がある場合は、販売店もしくは弊社営業センターまでご連絡く
 ださい。

安全について 安全に関する法規について

1.2.9 回転部に関する注意

回転部への巻き込まれ / 挟まれを防止するため、必ず次の事項をお守りください。

第1章

⑦ 危 険

回転中の冷却ファンおよび冷却ファン周囲の開口部、ワイヤ送給装置の送給ロールな どに手、指、髪の毛、または衣類などを近づけないでください。

1.3 安全に関する法規について

本項では、溶接に関連する法規 / 規格について説明します。 法規 / 規格は、改廃されることがあります。必ず最新版をご覧ください。

1.3.1 据付け(設置)/操作/保守点検/修理に関する関連法規・資格など

1.3.1.1 据付けに関して

電気設備技術基準	第10条	電気設備の接地
	第15条	地絡に対する保護対策
電気設備の技術基準の解釈について	第17条	接地工事の種類及び施設方法
	第 29 条	機械器具の金属製外箱等の接地
	第36条	地絡遮断装置の施設
	第190条	アーク溶接装置の施設
労働安全衛生規則	第 325 条	強烈な光線を発する場所
	第 333 条	漏電による感電の防止
	第 593 条	呼吸用保護類等
酸素欠乏症等防止規則	第21条	溶接に係る措置
粉じん障害防止規則	第1条	
	第2条	
金属アーク溶接等作業を継続して行う屋内作業場に係る 286号)	る溶接ヒュームの濃度	の測定の方法等(令和2年厚生労働省告示第
接地工事:電気工事士の有資格者		
内線規程	3330-4	アーク溶接機二次側電線

労働安全衛生法施行令の一部を改正する政令(令和2年政令148号) 特定化学物質障害予防規則及び作業環境測定法施行規則の一部を改正する省令(令和2年厚生労働省令第89号) 作業環境評価基準等の一部を改正する告示(令和2年厚生労働省告示第192号)

1.3.1.2 操作に関して

労働安全衛生規則 第 36 条 特別教育を必要とする業務 第 3 号 JIS/WES の有資格者 労働安全衛生規則に基づいた教育の受講者

1.3.1.3 保守点検、修理に関して

溶接機製造者による教育または社内教育の受講者で溶接機をよく理解した者

1.3.2 保護具等の関連規格

JIS Z 3950 溶接作業環境における浮遊粉じん濃度測定方法JIS T 8113 溶接用かわ製保護手袋JIS Z 8731 環境騒音の表示・測定方法JIS T 8141 遮光保護具JIS Z 8735 振動レベル測定方法JIS T 8142 溶接用保護面JIS Z 8812 有害紫外放射の測定方法JIS T 8151 防じんマスクJIS Z 8813 浮遊粉じん濃度測定方法通則JIS T 8161 防音保護具JIS T 8150 呼吸用保護具の選択、使用及び保守管理方法JIS T 8161 防音保護具

第2章 製品の仕様と構成

本章では、溶接電源の仕様や各部の名称、および構成について説明します。

2.1 仕様

本項では、溶接電源の仕様や外形寸法などについて説明します。

2.1.1 仕様

本項では、溶接電源の仕様について説明します。

仕 様	Welbee The Short Arc 350
溶接法	直流 / 直流低スパッタ
形式	WB — M350S
相数	三相
定格周波数	50/60Hz
定格入力電圧	200/220V
入力電圧範囲	200/220V ±10%
定格入力	16.4kVA 15.0kW
定格入力電流	47.3/43.0A
定格出力電流	350A
定格負荷電圧	36V
最高無負荷電圧	70/77V
定格使用率	60%
溶接条件メモリ数	100
使用温度範囲	$-$ 10 \sim 40 $^\circ$ C
使用湿度範囲	20 ~ 80%
保存温度範囲	− 20 ~ 55 °C
保存湿度範囲	20 ~ 80%
外形寸法(W×D×H)	395mm×710mm×640mm(アイボルトを含まず)
質量	52kg
静特性	定電圧特性
回路種別分類番号(※1)	33
換算係数 Ki(※1)	1.8

※1:高調波流出電流計算用

2.1.2 使用可能な溶接法

本項では、使用できる溶接法(シールドガス/ワイヤ種類/溶接種類)およびワイヤ径について説明します。

溶接法	ガス(※1)	ワイヤ材質	ワイヤ径(mm)	用途	溶込制御
		軟鋼ソリッド	0.6/0.8/0.9/1.0/1.2	半自動	可能
	CO ₂	軟鋼フラックスコアード	1.0/1.2/1.4	半自動	可能
		ステンレスフラックスコアード	0.9/1.2	半自動	可能
直流	MAG	軟鋼ソリッド	0.6/0.8/0.9/1.0/1.2	半自動	可能
	MIG (2%O ₂)	ステンレスソリッド	0.8/0.9/1.0/1.2	半自動	可能
		フェライト系 ステンレスソリッド	0.8/0.9/1.0/1.2	半自動	可能
+ +	CO ₂	軟鋼ソリッド	0.8/0.9/1.0/1.2	半自動	_
低スパッタ (※2)	MAG	軟鋼ソリッド	0.9/1.0/1.2	半自動	—
	MIG	ステンレスソリッド	0.9/1.0/1.2	半自動	—
	(2%O ₂)	フェライト系ステンレスソリッド	0.9/1.0/1.2	半自動	—

※1:シールドガスの混合比が下記と異なる場合は、一元などの適正条件が合わないことがあります。
 MAG ガス:アルゴン (Ar)80% + 炭酸ガス (CO₂)20%
 MIG ガス (ステンレス用):アルゴン (Ar)98% + 酸素 (O₂)2%

※2:従来の CM-7403 を使用して直流低スパッタで溶接される場合、以下の製品を使用する必要があります。詳細について は、それぞれの取扱説明書をご覧ください。

ワイヤ送給装置:CM-7403 + K5952E00(電圧検出アダプタ)

製品の仕様と構成 第2章

2.1.3 外形図

本項では、溶接電源の外形寸法について説明します。

2.1.4 使用率について

本項では、溶接電源の使用率について説明します。

∧ 注 意

- 溶接電源は、定格使用率以下で使用してください。
 定格使用率を超えると、溶接電源の劣化や焼損の原因になります。
- 定期的に湿気の少ない圧縮空気を溶接電源のトランジスタや整流器の放熱フィンに吹きつけ、チリやほこりを除去してください。
 放熱フィンにチリやほこりが堆積すると、使用率が低下するばかりでなく、溶接電源の劣化や焼損の原因になります。

<使用率 60 % の運転サイクル >

通電	休止	
6分	< 4分	
< 10分	>	

溶接電流値に応じた使用率を超えないように、使用可能範囲内で使用してください。 < 溶接電流値と使用率の関係 >

実使用では、溶接電源以外の構成品である溶接トーチなど、他の組み合わせ機器の中で、最も定格使用率が低い機器を基準 に使用してください。

溶接電源の定格使用率は、350A/36V 出力時で 60% です。
 (定格使用率 60% とは、10 分間のうち 6 分間を定格溶接電流で使用し、残りの 4 分間は休止する使い方です。)

第2章 製品の仕様と構成 製品の構成

2.2 製品の構成

本項では、溶接電源の組み合わせ、およびお客様にご用意いただくものなどについて説明します。

2.2.1 標準構成品

本項では、溶接電源の標準的な組み合わせについて説明します。 弊社ロボットに接続する場合の組み合わせについては、ロボット制御装置の取扱説明書をご覧ください。

- 溶接電源は、指定のワイヤ送給装置と組み合わせて使用してください。
 指定以外のものを組み合わせると、溶接電源の故障やトラブルの原因になります。
- 空冷式溶接トーチ使用時

番号	名称	付属品 (※1)	標準構成品 (※2)	別売品	備考
1	電圧検出ケーブル	0			
2	ガス流量調整器		0		
3	ワイヤ送給装置		0		
4	溶接トーチ		0		
5	ガスホース (3m)		0		(※3)
6	ワイヤ送給装置用制御ケーブル(1.5m)		0		(※3)
7	トーチ側ケーブル(2m)		0		(※3)
8	母材側ケーブル(2m)		0		(※3)
9	シールドガス				お客様にご用意いただく必要があります。
10	アース線				(🖙 2.2.3 お客様にご用意いただくもの)
11	アナログリモコン(3m)(別売品)			0	(※3)

※1:溶接電源に付属しています。低スパッタ溶接法以外では接続不要です。

※2:溶接電源の標準構成品になります。(溶接電源のご注文時、一緒に承る構成品です。)

※3:別売品で延長ケーブル・ホース(5m/10m/15m/20m)もあります。(3 2.2.4 別売品)

2.2.1.1 ワイヤ送給装置/溶接トーチ

溶接電源に合致したワイヤ送給装置ならびに溶接トーチを標準構成品として用意しています。詳細については、それぞれの取扱説明書をご覧ください。

2.2.1.2 ガス流量調整器

以下の中から、溶接電源に合致したガス流量調整器を標準構成品として用意しています。詳細については、使用するガ ス流量調整器の取扱説明書をご覧ください。

⑦ 危 険

- ガス流量調整器は、必ず使用するシールドガスに適合した高圧ガスボンベ用のものを 使用してください。
 - 不適切なものを使用した場合は、破裂する恐れがあります。
- ガス流量調整器は、使用する前にガス流量調整器の取扱説明書をよくお読みいただき、 注意事項をお守りください。
- ガス流量調整器を分解しないでください。
 分解 / 修理には、専門知識が必要です。ガス流量調整器に不具合がある場合は、販売店もしくは弊社営業センターまでご連絡ください。

形式	CO ₂	MAG	MIG	ヒータ
NP-202	0	0		なし
D-BHN-2		0	0	なし
FCR-226	0	0	0	あり

D-BHN-2/FCR-226

2.2.2 付属品

本項では、溶接電源の付属品について説明します。開梱時は、保証書、取扱説明書(本書)および次の付属品が揃っていることを確認してください。

品名	部品番号	数量	備考
電圧検出ケーブル(母材側)	K5791G00	1	5m ケーブル ×1 M10 圧着端子 ×1 端子キャップ ×1
六角棒スパナ No.8	-	1	出力端子ネジ固定用

2.2.3 お客様にご用意いただくもの

本項では、溶接電源を使用するにあたり、お客様にご用意いただくものについて説明します。 次のものを用意してください。

• 入力側電源ケーブル、アース線

名称	数量	備考
入力側電源ケーブル	3	太さ:14 ~ 38mm ² (溶接電源側圧着端子:6mmΦ/幅 20mm 以下) 設備側の 1 次電源と溶接電源を接続する電源ケーブルです。
アース線	2	太さ:14mm ² 以上(溶接電源側圧着端子:6mmΦ) 溶接電源の接地、および母材の接地を行うケーブルです。

シールドガス

JIS Z3253「アーク溶接およびプラズマ切断用シールドガス」に適合したシールドガスをご用意ください。

名称	備考
CO ₂ ガス	炭酸ガス (CO ₂)100%
MAG ガス	アルゴン (Ar)80% + 炭酸ガス (CO ₂)20%
MIG ガス(ステンレス用)	アルゴン (Ar)98% + 酸素 (O₂)2%

2.2.4 別売品

本項では、溶接電源に組み合わせて使用できる別売品について説明します。

2.2.4.1 リモコンおよび電圧検出ケーブルなど

リモコンや電圧検出ケーブルなどの別売品には、次のものがあります。

品名	部品番号(形式)	備考
アナログリモコン	K5804N00	ケーブル 3m 付き
変換ケーブル	K8116E00	従来のアナログリモコン (K5416S00), モバイルリモコン使用時用
モバイルリモコン	E-2642	
電圧検出ケーブル	K5416N00	母材側 10m
電圧検出ケーブル	K5416G00	母材側 30m(自動機用)
電圧検出ケーブル	K5416P00	トーチ側 3m(自動機用)
電圧検出切替線	K5953W00	電圧検出ケーブルが付属していないトーチを使用する場合に必要となる部品で す。電圧検出切替線を使用することで、ワイヤ送給装置側でアーク電圧を検出 できるようになります。 電圧検出切替線を接続していない状態で、電圧検出ケーブルが付属していない トーチを使用すると、溶接電源にアーク電圧検出異常(E-210)が発生し、出力 を停止します。
オプションボード	K8366B00	
外部入出力拡張キット	K-8399	(※1)
デジタルリモコン	E-2442	別途、CAN 通信ケーブル、BKCAN 変換コネクタが必要です。(※1)
CAN 通信ケーブル	BKCAN-0405	5m
CAN 通信 ワークル	BKCAN-0410	10m
BKCAN 変換コネクタ	K5810B00	
溶接インターフェース	IFR-101S	他社製ロボット用(※1)
PC ウェルディングモニタ	K-7496	(※1)
データストレージ	E-2746	(※1)
フィールドバス接続ツール	IFR-900EI	EtherNet/IP 接続タイプ(※1)

※1:オプションボード (K8366B00) を本機に取り付けご使用ください。

2.2.4.2 延長ケーブル・ホース明細

延長ケーブルやホースなどの別売品には、下記のものがあります。 作業半径を広げる場合は、作業半径に応じた延長ケーブルやホースを使用してください。

▲ 注 意

- 延長ケーブルは、引き延ばした状態で使用してください。
 延長ケーブルを巻いた状態で使用すると、アークが不安定になることがあります。
 途切た長さの延長ケーブルを告出してください。
- 適切な長さの延長ケーブルを使用してください。
 不必要に長いケーブルを使用すると、アークが不安定になることがあります。

采旦	日夕	形式				
田夕	四日	5m	10m	15m	20m	
1	ガスホース	BKGG-0605	BKGG-0610	BKGG-0615	BKGG-0620	
2	ワイヤ送給装置用制御ケーブル	BKCPJ-1005	BKCPJ-1010	BKCPJ-1015	BKCPJ-1020	
3	トーチ側ケーブル(※1)	BKPT-6007	BKDT 6012	BKDT_8017		
4	母材側ケーブル(※1)	DIGF 1-0007	DIGFT-0012	DICF 1-0017	DIGF 1-0022	
5	リモコン用制御ケーブル	BKCPJ-0605	BKCPJ-0610	BKCPJ-0615	BKCPJ-0620	

※1:トーチ側、母材側ケーブルの太さは溶接の際に流れる電流を安全に流せる太さを選択してください。

単位:sq(mm²)

第2章 製品の仕様と構造

次位電法	使用率						
伯汝电测	100%	80%	60%	40%	20%		
350A	_	_	60	60	38		
250A	60	60	60	38	38		
150A	38	38	38	22	14		

2.2.4.3 その他

品名	部品番号(形式)	備考
液晶画面保護シート	K8366W01	操作パネルの液晶画面保護用

2.3 各部の名称

本項では、溶接電源の各部の名称について説明します。

2.3.1 フロントパネル

本項では、溶接電源正面の名称について説明します。

2.3.2 リアパネル

本項では、溶接電源背面の名称について説明します。

第3章 運搬と設置

本章では、溶接電源の設置に必要な設備や設置環境、および運搬方法について説明します。

3.1 必要な設備について

本項では、溶接電源の設置に必要な電源設備、および溶接作業中の酸素欠乏や粉じん障害を防止するための設備について説明します。

3.1.1 電源設備

溶接電源の設置には、次の定格を満たす電源設備と保護機器が必要です。

⑦ 危 険

- 溶接機を湿気の多い場所、鉄板や鉄骨等の導電性の高い場所で使用するときは、必ず 漏電ブレーカを併設してください。(③)労働安全衛生規則第333条、電気設備技術基準第15条)
 - 上記をお守り頂けない場合、漏電による感電の恐れがあります。
- 溶接電源の入力側には、必ず溶接電源1台に対して1台のヒューズ付き開閉器、またはノーヒューズブレーカを設置してください。
 上記をお守り頂けない場合、過電流による感電や火災、溶接電源損傷の恐れがあります。
- 単相 3 線式 200V には対応しておりませんので、接続しないでください。 単相 3 線式 200V に接続すると、設備・溶接電源損傷の恐れがあります。

	設備	定格
重调設備	電源電圧	200V/220V±10%(三相)
电标改曲	設備容量	17kVA 以上
(D=#1/W.DD	ヒューズ付き開閉器	開閉器容量:60A 以上 ヒューズ:40A(B 種)
保護機奋	ノーヒューズブレーカ (またけ湿雲ブレーカ)(※1)	60A
	(よたは個电ノレー刀)(※1)	

※1:漏電ブレーカには高感度型漏電ブレーカの設置をお勧めします。(詳しくはブレーカの製造メーカーにご相談ください。)

3.1.1.1 発電機や補助電源の使用について

▲注 意

溶接電源の故障やアーク切れを防止するため、必ず下記の内容をお守りください。

電源にエンジン発電機を使用する場合は、次の点に注意してください。

- エンジン発電機の出力電圧は、無負荷運転時において 200 ~ 210V に設定してください。 出力電圧が高い場合は、溶接電源の故障につながります。
- エンジン発電機の容量は、溶接電源の定格入力(kVA)の2倍以上のもので、ダンパ巻線付きを使用してください。 一般的にエンジン発電機は、商用電源と比べると、負荷変動に対する電圧回復時間が遅い傾向にあります。そのため、容量が不足した場合は、アークスタートなどによる急激な電流変化で出力電圧が異常に低下し、アーク切れが 生じます。
- 溶接電源1台に対して1台のエンジン発電機を使用してください。複数の溶接電源に使用すると出力電圧が不安定になるため、アーク切れが生じやすくなります。

電源にエンジンウエルダ補助電源を使用する場合は、波形改善の処理が施されたものを使用してください。 粗悪な電源を使用した場合は、溶接電源の故障につながります。

3.1.2 換気設備/局所排気設備

本項では、溶接作業場所における換気設備、および局所排気設備について説明します。

3.1.2.1 換気設備について

溶接作業場所が酸素欠乏症等防止規則で規定する場所(タンク、ボイラー、反応塔および船倉の内部、閉塞された空間、その他通風が不十分な場所など)の場合は、この規則に準拠した換気設備を設置してください。 換気設備の条件:

溶接作業場所の酸素濃度が 18% 以上を保持できること

⑦ 危 険

- 炭酸ガスやアルゴンガスなど、酸素よりも比重の重たいガスは底部に滞留します。底
 部における酸素濃度が規定値を満たす換気設備を設置してください。
- 換気設備の設置が困難な場合や換気設備の能力が不十分な場合は、必ず空気呼吸器などを着用してください。
- 換気設備は、必ず酸素欠乏症等防止規則に従い点検し、溶接作業場所の酸素濃度が規 定値を満たすことを確認してください。

3.2 設置環境について

本項では、溶接電源の設置環境について説明します。

⑦ 危 険

火災や溶接電源の故障を防止するため、必ず下記の環境を満たす場所に設置してください。

3.2.1 設置環境

- 可燃物や可燃性ガスのない場所
 可燃物が取り除けない場合は、可燃物を不燃性カバーで覆ってください。
- 有機溶剤、化学薬品、切削油、または合成油などの飛散がない場所、および大気中に含まれない場所 これらは、樹脂部品のクラック(割れ)や強度低下の原因につながります。
- 屋内設置で直射日光や雨が当たらない場所
- コンクリートのように強固な床面で水平な場所
 床面の強度は、溶接電源の重量を考慮してください。
 必ずアイボルトが付いた上面を上側にし、転倒しないように設置してください。
- 周囲温度が-10~40℃の場所
- 周囲湿度が 50%以下(周囲温度 40 ℃)、90%以下(周囲温度 20 ℃)の場所で結露が発生しないこと
- 標高が 1000m を超えない場所
- 傾斜 10°以下の場所 (車輪付き溶接電源は車輪止め等で固定してください。)
- 溶接電源の内部にスパッタなどの金属製異物が入らない場所
- 壁や他の溶接電源から 30cm 以上離れた場所 特に通風口がふさがれないように、注意してください。
- アーク部に風が当たらない場所 風が当たる場合は、つい立てなどを設置してください。
- その他
 - 雨中では使用しないでください。もしも溶接電源に雨や水がかかったり、結露が発生したりした場合は、必ず 乾燥させてから使用してください。

3.2.2 電磁障害について

電磁障害を未然に防止するため、次のことを検討してください。また、電磁障害が発生した場合も、再検討してください。

- 入出力ケーブルを他のケーブルや周辺機器に近づけない。
 (距離を離して取り回す、あるいは入出力ケーブルを短くする)
- 入力側ケーブルは、接地した金属製コンジット内に設置する。
- 溶接作業場所全体を電磁シールドする。
- 溶接電源の設置場所を変更する。
- 周辺機器、あるいは溶接電源側に適切なラインフィルタを追加する。

3.3 運搬作業手順

本項では、溶接電源の運搬方法について説明します。

① 危 険

- 溶接電源の入力端子、出力端子等の帯電部には、絶対に触れないでください。
 感電する恐れがあります。
- 運搬する距離が短い場合でも、溶接電源を接続している配電箱の開閉器により入力電 源を必ず遮断してください。
 入力電源を投入したまま作業すると、感電する恐れがあります。

▲注 意

- 運搬時は、手や足を挟まないように注意してください。
- 溶接電源に、強い衝撃を与えないように運搬してください。
 溶接電源が損傷する恐れがあります。
- 車輪付き溶接電源は、設置後に必ず車輪止め等で固定してください。
 固定せずに使用すると、人身事故や溶接電源の損傷につながる恐れがあります。

3.3.1 吊り上げ装置による運搬

本項では、クレーンなどの吊り上げ装置を使用した運搬方法について説明します。

⑦ 危 険

溶接電源の落下や人身事故防止のため、必ず次の事項をお守りください。

- クレーンの操作や玉掛け作業は、必ず有資格者が行ってください。
- ロープやシャックルなどの吊り具、および吊り上げ装置は、溶接電源の重量を考慮したものを使用し、必ず指定された手順で吊り上げてください。
- 溶接電源は、必ず全てのアイボルトを使用して、単体で吊り上げてください。
- 溶接電源の上に工具や他の装置などを載せて、吊り上げないでください。
- 溶接電源上面のアイボルトが緩んでいないことを事前に確認してください。緩んでいた場合は締め付けてください。

第3章

運搬と設置 運搬作業手順

(手順)

1.アイボルトに準備した吊り具を取り付けます。

2.吊り上げ装置を使用し、バランスに注意しながら溶接電源を吊り上げます。

3.3.2 手押しや人力による運搬

本項では、手押しなどの人力による運搬方法について説明します。

- ⑦ 危 険
- 溶接電源を人力で持ち上げる場合は、必ず溶接電源の底を持ち、複数人で持ち上げてください。

上記をお守り頂けない場合、腰痛や溶接電源の変形 / 損傷につながる恐れがあります。

キャリヤなどを使用する場合は、溶接電源の重量を考慮したものを準備してください。
 上記をお守り頂けない場合、溶接電源が落下する恐れがあります。

(手順)

1.車輪付き溶接電源は車輪を利用し、転倒させないように、静かに手で押します。

2.キャリヤなどを使用する場合は、溶接電源とキャリヤをロープなどで固定し、搬送します。

第4章 接続

本章では、溶接電源の接続方法について説明します。

4.1 接続および接地作業の注意

本項では、接続時の注意事項、および接地作業時の注意事項について説明します。人身事故や火災を防止するため、必ずお守りください。

⑦ 危 険

感電防止のため、必ず次の事項をお守りください。

- 保護手袋、安全靴、および長袖作業着などの保護具を正しく着用してください。
- 溶接電源の入力端子、出力端子等の帯電部には、絶対に触れないでください。
- 溶接電源のケース、母材、および母材と電気的に接続された治具などは、必ず電気工事士の資格を有する人が接地工事を行ってください。(☞ 電気設備技術基準 第 10 条、電気設備の技術基準の解釈について 第 190 条)
- 溶接電源を接続する配電箱の開閉器により、入力電源を必ず遮断してください。また、 接続完了の確認が終了するまでは、この入力電源は入れないでください。
- ケーブルは、指定の太さのものを使用してください。また、損傷しているケーブルや 導体がむきだしになっているケーブルは、使用しないでください。
- ・ ケーブルの接続部は、確実に締め付け、絶縁してください。
- ・ ケーブルの接続後は、ケースやカバーを確実に取り付けてください。
- ケーブルを延長する場合は、必ず専用の延長ケーブルを使用してください。絶対に丸端子どうしでケーブルを延長しないでください。

4.2 接続手順

本項では、溶接電源の接続手順について説明します。溶接電源は、次の流れで接続します。

① 危 険

接続完了の確認作業が終了するまでは、溶接電源に入力電源を投入しないでください。 感電する恐れがあります。

出力側ケーブルの接続	(🞯 4.2.1 出力側ケーブルの接続)
\downarrow	
ワイヤ送給装置の接続	(🞯 4.2.2 ワイヤ送給装置の接続)
\downarrow	
溶接トーチの接続	(🖙 4.2.3 溶接トーチの接続)
\downarrow	
電圧検出ケーブルの接続	(🖙 4.2.4 母材側電圧検出ケーブルの接続)
\downarrow	
シールドガスの接続	(🞯 4.2.5 シールドガスの接続)
\downarrow	
接地工事	(🖙 4.3 接地と入力電源の接続)
\downarrow	
入力電源の接続	(🖙 4.3 接地と入力電源の接続)
\downarrow	-
接続完了の確認作業	(🖙 4.4 接続完了の確認作業)

4.2.1 出力側ケーブルの接続

本項では、出力側ケーブルの接続手順について説明します。

 溶接電源のケース、母材、および治具は、必ずケーブル太さ14mm²以上のケーブル を使用し、D種接地工事を行ってください。(☞ 電気設備技術基準 第 10 条、電気設 備の技術基準の解釈について 第 190 条) 接地しないで使用すると、感電する恐れがあります。

(手順)

- 1. 母材の D 種接地工事を行います。
- 2. 出力端子カバーを取り外します。
- 3. 母材側ケーブルを出力端子(母材側)と母材に接続します。
 - 溶接電源側は、出力端子の止めネジを外し、母材側ケーブルの丸形端子を止めネジでしっかりと固定してくだ さい。

▲ 注 意

- 出力端子と圧着端子の間に、座金やばね座金を挟み込まないでください。
- 座金やばね座金を挟み込むと接続部が焼損する恐れがあります。
- 4. トーチ側ケーブルを出力端子(トーチ側)に接続します。
 - 上記同様に接続してください。
- 5. 出力端子カバーを取り付けます。

以上で出力側ケーブルの接続は終了です。続けて「4.2.2 ワイヤ送給装置の接続」を行います。

接続 接続手順

第4章

4.2.2 ワイヤ送給装置の接続

本項では、ワイヤ送給装置の接続手順について説明します。ワイヤ送給装置の取扱説明書も、併せてご覧ください。

▲ 注 意

- アナログリモコン(別売品)を使用しない場合は、アナログリモコンコンセントの キャップを取り外さないでください。
- ✓参 考
 • 電圧検出ケーブルを使用する場合は、ワイヤ送給装置または溶接電源の配線を変更する必要があります。(☞ 4.2.4 母材側電圧検出ケーブルの接続)

- 1. ワイヤ送給装置のサイドカバーを取り外します。
- 2. トーチ側ケーブルを M10 ターミナルに接続します。
 - 端子の緩みがないように、しっかりとボルトで固定してください。

▲ 注 貢

- 圧着端子間に、座金やばね座金を挟み込まないよう注意してください。 座金やばね座金を挟み込むと接続部が焼損する恐れがあります。
- 3. 送給装置コンセントのキャップを取り外し、ワイヤ送給装置用制御ケーブル(10 心)を接続します。
 - コネクタの凹部とコンセントの凸部を合わせ、コネクタをしっかりと差し込んだあと、ローレットを時計回り に回して締めてください。
 - アナログリモコン(別売品)を使用する場合は、アナログリモコンコンセントのキャップを取り外し、リモコ ン用制御ケーブル(6 心)を接続してください。
- サイドカバーをフレームのスリットに差し込み、ネジで取り付けます。

以上でワイヤ送給装置の接続は終了です。続けて「4.2.3 溶接トーチの接続」を行います。

4.2.3 溶接トーチの接続

本項では、溶接トーチの接続手順について説明します。

1. 溶接トーチをワイヤ送給装置に接続します。

● コネクタの形状と端子の形状を合わせ、コネクタをしっかりと差し込んだあと、ローレットを時計回りに回し て締めてください。

2. 電圧検出アダプタをワイヤ送給装置に接続します。

以上で溶接トーチの接続は終了です。

続けて「4.2.4 母材側電圧検出ケーブルの接続」を行います。

4.2.4 母材側電圧検出ケーブルの接続

本項では、電圧検出ケーブルの接続手順について説明します。電圧検出ケーブルは、「直流低スパッタモード」選択時 に必要です。それ以外の溶接法でも、延長ケーブルの長さが往復 30m を超える場合は、母材側電圧検出ケーブルの使 用をお勧めします。

電圧検出ケーブルは、アーク電圧が正確にフィードバックされるように、配線する必要があります。電圧降下が検出されることのないよう、なるべく母材に近い位置に接続してください。

母材側電圧検出ケーブル(別売品:K5416N00 または K5416G00)は、ワイヤ送給装置または溶接電源前面の母材側電 圧直接検出用端子に接続して使用できます。

⑦ 危 険

溶接電源を接続している配線箱の開閉器により入力電源を遮断後、作業してください。
 感電する恐れがあります。

/参 考

- 溶接トーチの接続については、「4.2.3 溶接トーチの接続」も合わせてご覧ください。
- 低スパッタ溶接モード以外の溶接法で電圧検出ケーブルを使用する場合は、内部機能(F38)を「1」に設定してください。(③ 6.7.1 内部機能の設定方法、6.7.2.25 F38:アーク電圧直接検出切替)
- 直流低スパッタ溶接では、ワイヤ送給装置 CMV-7404/CMV-7403 または電圧検出アダプタ付き ワイヤ送給装置 CM-7403 を使用してください。

ワイヤ送給装置に母材側電圧検出ケーブルを接続する手順について説明します。

(手順)

- 1. 母材側電圧検出ケーブルを適切な長さに切断します。
- 2. 母材側電圧検出ケーブルを母材に接続します。
- 3. 母材側電圧検出ケーブルをワイヤ送給装置の電圧検出端子に接続します。

考 参

母材側電圧検出ケーブルは、溶接電源の母材側電圧直接検出用端子に接続することもできます。
 吊り上げ装置などでワイヤ送給装置を吊した状態で使用する場合、母材側電圧直接検出用端子に
 母材側電圧検出ケーブルを接続してください。

誘導ノイズの影響を低減させるため、「4.2.4.3 接続時の注意」に記載した接続時の注意、および「4.2.4.4 電圧検出ケー ブルの配線例」を考慮してください。

4.2.4.2 溶接電源への接続

溶接電源の母材側電圧直接検出用端子に母材側電圧検出ケーブルを接続する手順について説明します。

(手順)

- 1. 溶接電源を接続している配電箱の開閉器により、入力電源が遮断されていることを確認します。
- 2. 母材側電圧検出ケーブルを母材側電圧直接検出用端子に接続します。

以上で電圧検出ケーブルの配線は終了です。続けて「4.2.5 シールドガスの接続」を行います。

第4章

接続 接続手順

4.2.4.3 接続時の注意

電圧検出ケーブルは、アーク電圧が正確にフィードバックされるように、配線する必要があります。誘導ノイズの影響 を低減させるため、次の点に注意してください。溶接電源に母材側電圧検出ケーブルを接続する場合も同様に注意して ください。

- 母材側電圧検出ケーブルと溶接トーチを、できるだけ近づけて配線してください。
- 母材側ケーブルと母材側電圧検出線を結束バンドで縛らないでください。
- ケーブルベアの使用時は、母材側ケーブルと母材側電圧検出ケーブルをできるだけ離して配線してください。
- <母材側電圧ケーブルの適切な接続例>

4.2.4.4 電圧検出ケーブルの配線例

母材に対する母材側電圧検出ケーブルの配線例を示します。

■溶接ステージが複数ある場合の配線例

母材側電圧検出ケーブルを溶接電源母材端子に接続する母材ケーブルから最も遠いステージに母材ケーブルとは離して 接続します。

■ポジショナーに給電ブラシなどを通じて給電する場合の配線例 給電ブラシは治具ベースと絶縁し、母材側電圧検出ケーブルを治具ベースに接続します。

 を 考

 電圧検出ケーブルを配線する前に、治具ベースと母材間の導通が安定していることを確認してく
 ださい。

第4章

接続 接続手順

4.2.5 シールドガスの接続

本項では、シールドガスの接続手順について説明します。ワイヤ送給装置の取扱説明書も、併せてご覧ください。

(手順)

- ガス流量計を取り付ける前にガスボンベのバルブを一旦開け閉めし、接続部のゴミを吹き飛ばしてください。
- 2. ガス流量調整器をガスボンベに取り付けます。
- 3. ガスホースをガス流量調整器とワイヤ送給装置に接続します。

以上でシールドガスの接続は終了です。 空冷式溶接トーチを使用する場合は、続けて「4.3 接地と入力電源の接続」を行います。

接続 接地と入力電源の接続

第4章

接地と入力電源の接続 4.3

本項では、接地工事、および溶接電源と入力側電源(設備側電源)の接続手順について説明します。

- 溶接電源を接続している配電箱の開閉器により、入力電源が遮断されていることを確認します。
- 2. 母材 / 治具、および溶接電源の接地を行います。
- 溶接電源の入力端子カバー、およびケーブル固定具を取り外します。
- 4. 電源ケーブル(3本)を入力端子に接続します。(UVW 相の接続に決まった相順はありません。)
- 5. 入力端子カバー、およびケーブル固定具を元に戻します。
 - ケーブル固定具には、2種類の溝があります。使用する電源ケーブルの太さに応じ、使い分けてください。 ケーブル太さ6~22mm²: 溝の浅い側を使用 ケーブル太さ 22 ~ 38mm²: 溝の深い側を使用

以上で接地および入力電源の接続は終了です。続けて「4.4 接続完了の確認作業」を行います。

4.4 接続完了の確認作業

本項では、全ての接続が終了したあとの確認事項について説明します。接続の終了後は、次の点を確認してください。

- ケーブル類の接続に緩みがないこと
 緩みがある場合は、増し締めを行い、確実に固定してください。
- 溶接電源の入力ケーブルを接続しているブレーカに、他の機器の電源ケーブルを接続していないこと ブレーカには、溶接電源のみを接続してください。
- 開閉器の容量、ヒューズ、ノーヒューズブレーカの定格が適正であること(③ 3.1.1 電源設備)
- 溶接電源のケース、母材、および治具は、D種接地工事を行っていること
 アース線をブレーカの接地端子に接続した場合は、そのアース端子が問題なく接地されていることを確認してください。
- 溶接電源の上面に工具の置き忘れや他の装置を載せていないこと 溶接電源の上面には、物を置かないでください。

4.5 自動機との接続

本項では、溶接電源を自動機と接続する場合の方法について説明します。

4.5.1 自動機接続の配線

溶接電源背面の外部接続カバーを開けた場所に、外部接続用端子台が設けてあります。自動機に接続する場合は、この 外部接続用端子台を使用します。

端子	F番号	信号	弓名	機能説明
TM4	1-2	READY	電源準備出力	溶接電源側が溶接可能な状態のときに端子間がオンします。 異常を検出している場合はオフします。
	3-4	STOP	動作停止入力	端子間を開放にすることで、溶接電源の出力が停止します。 スイッチを組み合わせる場合は、不用意な復帰を防止するため、プッシュロック ターンリセット形のスイッチを使用してください。
	5-6	WCR	WCR 出力	溶接電流を検出したときに端子間の接点が閉じます。
	7-8	IN-EXT	外部入力	機能拡張のための予備入力端子です。 内部機能(ファンクション)を設定することで、外部からガスバルブの開閉や、イ ンチング操作を行なうことができます。(🎯 6.7 内部機能の設定)

■外部入出力拡張キット (K-8399) 使用の場合

外部入出力拡張キット (K-8399)を使用する場合は配線の接続を変更する必要があります。接続方法については外部入 出力拡張キット (K-8399) 取扱説明書を参照してください。

端子番号		信号名	機能説明
TM1	1-2	機能無し	本機能はありません。
TM2	1-2	機能無し	本機能はありません。

第4章

端子番号		信号名		機能説明	
TM3	1-2	READY	電源準備出力	溶接電源側が溶接可能な状態のときに端子間がオンします。 異常を検出している場合はオフします。	
	3-4	STOP	動作停止入力	端子間を開放にすることで、溶接電源の出力が停止します。 スイッチを組み合わせる場合は、不用意な復帰を防止するため、プッシュロックターンリ セット形のスイッチを使用してください。	
	5-9	IN-EXT1	外部入力 1	機能拡張のための予備入力端子です。 内部機能(ファンクション)を設定することで、外部からガスバルブの開閉や、インチン グ操作を行なうことができます。 🖙 6.7 内部機能の設定)	
	6-9	IN-EXT2	外部入力 2		
	7-9	IN-EXT3	外部入力 3		
	8-9	IN-EXT4	外部入力 4		
	1-2	24V 0.2A	24V 電源	24 V の電源を出力しています。 電流容量:0.2A(最大値)	
	3-4	OUT- EXT1	外部出力 1	- 機能拡張のための予備出力端子です。 - 機能拡張のための予備出力端子です。 - 内部機能(ファンクション)を設定することで、溶接監視のアラーム信号を外部へ出力す - ろことができます (☞ 67 内部機能の設定	
TM4	5-6	OUT- EXT2	外部出力 2		
	7-8	OUT- EXT3	外部出力 3		
	9-10	OUT- EXT4	外部出力 4		
	11-12	WCR	WCR 出力	溶接電流を検出したときに端子間の接点が閉じます。	

/注 記

• 接続対象となる機器の取扱説明書をご確認の上、接続してください。接点の接続先に コンデンサが接続されている場合は、限流抵抗器を追加してください。

4.5.2 外部接続用端子への接続

外部接続用端子への接続手順について説明します。

⑦ 危 険

感電を防止するため、必ず次の事項をお守りください。

- 配線作業は、溶接機をよく理解した人が行ってください。
- 溶接電源の入力端子、出力端子および内部の帯電部に触れないでください。
- 溶接電源を接続している配電箱の開閉器により、入力電源を必ず遮断し、3分以上が 経過したあとに作業を開始してください。また、作業が終了するまでは、1次電源を 投入しないでください。
- 損傷しているケーブルや導体がむきだしになっているケーブルは、使用しないでください。
- ケーブルの接続後は、ケースやカバーを確実に取り付けてください。

外部接続用端子に接続するケーブルは、次のものを使用してください。

- ケーブル太さ: AWG22 ~ AWG16 (0.33 ~ 1.3 mm²)
- 指定以外のものを使用した場合は、発熱や火災の原因につながります。また、外部接続用端子に接続することもできません。

▲ 注 意

- 外部接続用端子台から引き出した制御ケーブルは、溶接用パワーケーブルやトーチ ケーブルなどからできる限り離してください。 ノイズなどの影響で、不具合を生じる恐れがあります。
- プリント板の端子台以外の線を外部に引き出さないでください。
 故障や誤動作の原因につながります。

※外部入出力拡張キット (K-8399) 使用の場合のみ

(手順)

- 溶接電源を接続している配電箱の開閉器により、入力電源が遮断されていることを確認します。
- 2. 取付ネジを取り外し、外部接続カバーを開きます。
- 3. ナイフなどを使用して膜付きグロメットに十字の切れ込みを入れ、ケーブルを通します。
 複数ある膜付きグロメットの中から、任意の膜付きグロメットを加工してください。
- 4. ケーブルを外部接続用端子に接続します。
 - 膜付グロメットとケーブル間に隙間ができないよう結束バンドで固定してください。
 - 外部入出力拡張キット (K-8399) を使用する場合、以下の何れかでケーブルを外部接続用端子に挿入してください。

パターン A の場合はケーブルの被覆を 10 ~ 11mm 剥き、パターン B の場合はケーブルの被覆を 8 ~ 9mm 剥き、端子台のボタンを押しながら奥まで挿入してください。

5. 配線に誤りがないことを確認し、外部接続カバーを元に戻します。

第5章 溶接作業

本章では、溶接作業前の準備から溶接終了までの手順などについて説明します。

5.1 溶接前の確認事項

本項では、溶接前の確認事項について説明します。溶接トラブルを未然に防止するため、次の事項を溶接環境が整った 時点で確認してください。(弊社が推奨する確認項目です。また、電源投入後やシールドガス供給後の確認事項も含ま れています。)

	確認項目	対策	チェック
1	ケーブル類の接続部に緩みがないこと	工具を使用し、確実に接続してください。	
2	ケーブル類の接続端子や接続部に油分やスパッ タなどの汚れが付着していないこと	接続端子や接続部の金属面がしっかりと露出するように、汚れを拭き 取ってください。金ブラシなどを使用するとより効果的です。	
3	電圧検出ケーブル(母材側)と母材側ケーブル を共締めしていないこと	電圧検出ケーブル(母材側)と母材側ケーブルは、各々別の箇所に接続 してください。 また、各々のケーブルは、溶接ワークに近い箇所に接続してください。	
4	電圧検出ケーブルが適切に配線されていること	母材側とトーチ側の電圧検出ケーブルは、沿わせて配線してください。 (ジ 4.2.4 母材側電圧検出ケーブルの接続) また、電圧検出ケーブル(母材側)は、母材側ケーブルなどとは 10cm 以上離してください。	
5	電圧検出ケーブルが損傷していないこと	損傷している恐れがある場合は、テスタを使用し、電圧検出ケーブル両 端間の抵抗を測定してください。 抵抗値が高い場合は、電圧検出ケーブルを新品に交換してください。 (参考値:15.5mΩ/m)	
6	治具と溶接ワークとの接触部が塗装されていな いこと	塗装されている場合は、接触抵抗が増大しアーク電圧降下の原因になり ます。接触部をグラインダなどで研磨し、金属面を露出させてくださ い。	
7	治具と溶接ワークとの接触部が溶け落ちやス パッタ、経年劣化などの影響で凹凸になってい ないこと	グラインダなどで治具の表面を研磨し、溶接ワークと治具とが確実に接触するようにしてください。	
8	シールドガスが適正であること 混合ガスは混合比が適正であること	 シールドガスは、次の混合比にしてください。 CO₂ ガス : 炭酸ガス (CO₂)100% MAG ガス : アルゴン (Ar)80%+ 炭酸ガス (CO₂)20% MIG ガス : アルゴン (Ar)98%+ 酸素 (O₂)2% (ステンレス) MIG ガス : アルゴン (Ar)100% (アルミブロンズ / シリコンブロンズ) 	
9	シールドガスが正しく混合されていること	混合器を使用してください。また、溶接が不安定な場合は、プリミック スガスを使用し、溶接状態が改善されるかを確認してください。CO ₂ 濃 度が高い場合は、スパッタ発生量が増加します。	
10	シールドガスの流量が適正であること	シールドガスは、次の流量にしてください。 CO ₂ /MAG ガスの場合 : 10 ~ 25L/min MIG ガスの場合 : 15 ~ 25L/min	
11	シールドガスを混合させている場合、各ガス圧 が同一であること	各ガス圧を同一にしてください。	
12	溶接ワイヤに油、その他の汚れが付着していな いこと	汚れを拭き取る方法や脱脂を検討してください。	
13	 CO ₂ および MAG 溶接において、溶接終了時のワ イヤ先端の粒径が過大 / 過小でないこと	アンチスティック電圧を調整し、ワイヤ先端の粒径がワイヤ径の 1.2 ~ 1.5 倍になるようにしてください。それよりも小さい場合にはアンチス ティック電圧を高く、大きい場合には低く設定してください。	
14	溶接開始部で、溶接ワイヤ先端と溶接ワークが 接触していないこと (ロボットを使用している場合は、「溶接切」に して数回運転を行い、溶接ワイヤと溶接ワーク が接触していないことを確認してください)	接触している場合は、アンチスティック電圧を高く設定し、溶接終了時 の溶接ワイヤの燃え上がり量を増やしてください。 アンチスティック電圧を適正以上に高く設定した場合は、ワイヤ先端の 粒径が大きくなり過ぎ、次回の溶接スタートが悪くなることがあるた め、注意してください。	
15	溶接トーチのチップが消耗していないこと	チップの穴径を目視で確認し、新品時の穴径の 1.2 倍以上ある場合、ま たはチップ本体が変色している場合は、新品に交換してください。	
16	ワイヤ送給時、加圧ロールが空転していないこと、およびワイヤリールがスムーズに回転していること	ワイヤ送給装置の加圧レベルを調整してください。改善されない場合 は、他の要因でワイヤ送給に過剰な負荷が生じていないことを確認して ください。(3) 項目 12、17、18)	
17	送給ロールの溝が汚れていないこと	針金状のもので、溝の汚れを清掃してください。	

第5章 溶接作業

	確認項目	対策	チェック
18	ワイヤの送給抵抗が大きくないこと (ワイヤ送給装置の加圧ホルダを持ち上げた状態 で、溶接ワイヤ先端をペンチなどでつかみ、容 易に人力で引き抜くことができれば適正です)	トーチケーブルは、鋭角な曲がりがないようにしてください。 ライナに汚れが詰まっている場合やインチングしたワイヤに傷がある場 合は、ライナを新品に交換してください。 (ライナの交換時は、溶接トーチに付属している説明書の注意事項に従 い適切に処理してください) ライナを切断する場合は、次の点に注意してください。 ライナの長過ぎ:送給抵抗が増大し、ワイヤ送給装置の寿命の低下につ ながります。 ライナの短過ぎ:送給不良が発生します。	
19	アーク発生部に直接風が当たらないこと	つい立てなどを設置。	

電源投入とガス供給 5.2

溶接作業

電源投入とガス供給

第5章

本項では、電源 / シールドガスの供給手順について説明します。

カバー

元栓

1

入力電源

(手順)

1. 入力電源を投入します。

- 配電箱の開閉器を操作して、入力電源を投入してください。
- ⇒ 主電源表示灯が点灯します。
- 2. 溶接電源の電源スイッチを ON にします。
- 3. 流量調整ツマミが「SHUT」側になっていることを確認し、「ガスチェック」キーを押します。
 - ⇒ タッチパネルに「ガスチェック」画面が表示され、ガスチェック(シールドガスの放流)状態になります。
 - ⇒ ガスチェックは、約2分間継続し、自動的に停止します。途中でガスチェックを停止させたい場合は、再度 「ガスチェック」キーを押してください。

- 4. シールドガスの元栓を開けます。
 - ガス流量調整器に圧力計が付いている場合は、圧力計を確認しながら、適正な圧力になるまで元栓を開けてく ださい。
- 5. 流量調整ツマミを「OPEN」側に回し、シールドガスの流量を調整します。
- 6.「ガスチェック」キーを押します。

⇒ タッチパネルが元の画面に戻り、ガスチェックが停止します。

5.3 ワイヤのインチング

本項では、ワイヤのインチング手順(送給手順)について説明します。

⑦ 危 険

- インチング中は、溶接トーチ先端(チップ)を覗き込まないでください。また、目、 顔および身体に溶接トーチの先端を向けたり、近づけたりしないでください。 ワイヤが不意に飛び出て、受傷する恐れがあります。
- ワイヤ送給装置の送給ロールなどに手、指、髪の毛、または衣類などを近づけないでください。

巻き込まれる恐れがあります。

- (手順)
- 1. トーチケーブルを曲げないように、真っ直ぐに伸ばします。
 - ⇒ 曲がっている場合は、ワイヤの送給不良やワイヤの曲がりの原因になります。
- 2.「インチング」キーを押し、ワイヤを送給します。
 - ワイヤがチップ先端から約 10mm 出るまで、「インチング」キーを押し続けてください。「インチング」キーから手を放すと、ワイヤの送給は停止します。ワイヤが出過ぎた場合は、ニッパなどで切り落としてください。

- ⇒ ワイヤ送給中は、タッチパネルに「インチング」画面が表示されます。
- ⇒ ワイヤの送給中にタッチパネルの送給速度の項目を選択すると、送給速度を調整することができます。

<u> /参 考</u>

ワイヤの送給は、リモコン(別売品)で行うこともできます。また、ワイヤの送給中にリモコンの溶接電流調整ツマミを回すと、送給速度を調整することができます。(③ 6.8 アナログリモコン(別売品)の操作)

5.4 溶接条件の確認と設定

本項では、溶接条件の確認、および操作パネルの誤操作防止機能について説明します。

5.4.1 溶接条件の読み出し

溶接を始める前は、溶接条件(溶接電流 / 電圧、シールドガスの種類、およびワイヤ種類 / ワイヤ径など)を設定する 必要があります。(☞ 6.4 溶接条件の作成ガイド)

溶接条件をメモリ登録している場合は、その溶接条件を読み出して使用できます。(③ 6.5 溶接条件のメモリ機能) 読み出したあとは、溶接条件に間違いがないことを確認してください。

5.4.2 操作パネルの誤操作防止

本項では、操作パネルの誤操作防止機能について説明します。 誤操作などで、安易に溶接条件が変更されないように、キーロック解除以外のパネル操作ができなくなります。ただ し、アナログリモコン使用時は、アナログリモコンによる電流電圧調整は可能です。

5.4.2.1 誤操作防止機能を有効にする

- 1. その他 > キーロック > ON
 - ⇒ 「ホーム」画面にロックがかかり、「キーロック解除」キー選択以外の操作ができなくなります。

- 電源スイッチを OFF にしても、誤操作防止機能は無効になりません。
- 溶接条件と内部機能の初期化を行うと、誤操作防止機能は無効になります。
 (☞ 7.4 溶接条件と内部機能の初期化)

5.4.2.2 誤操作防止機能を無効にする

- 1. 鍵マークを3秒間選択し続け、ロックを解除します。
 - ⇒ パスワードが設定されていない場合は、ロックが解除され「ホーム」画面へ戻ります。
 - ⇒ パスワードが設定されている場合は、タッチパネルにパスワード入力画面が表示されます。パスワードを入力 し、「OK」を選択してください。
 - ・ パスワードが一致した場合は、キーロックが解除され「ホーム」画面へ戻ります。
 - パスワードが一致しない場合は、タッチパネルに「パスワード NG」と表示されます。パスワードを確認し、操作をやり直してください。

5.5 溶接作業の実施

本項では、溶接の開始から終了までの手順について説明します。

5.5.1 溶接開始の操作

- 1. 溶接条件の設定後、トーチスイッチの操作で溶接を開始します。 (376.6.4 クレータの設定)
 - ⇒ 溶接中は、タッチパネルに溶接電流と溶接電圧がリアルタイムで表示されます。この表示は約1秒ごとの出力の平均値です。

- トーチスイッチの操作で一連の溶接を終了します。(③ 6.6.4 クレータの設定)
 - ⇒ 溶接終了時は、本溶接最後の1秒間の「平均溶接電流」および「平均溶接電圧」、「熱量」の値がタッチパネル に表示されます。

ホーム				
15	0 _A	19	.0	v
		熱量	8.235	kj
	~ 、 溶	接結果		

/参 考

- 点滅表示中にタッチパネル上をタッチすると、設定値表示に替わります。
- ・ 点滅表示時間は、内部機能(F8)により変更することができます。
- タック溶接など、溶接の時間が短い場合は、正しく結果表示されません。
- ワイヤ消費量はワイヤのスリップ等により、実際のワイヤ消費量と誤差が発生する場合があります。
- モータ電流は平滑化した値を表示していますので、モータ電流の急激な変化についてはトレース できない場合があります。

第5章

溶接作業 溶接作業の実施

5.5.2 溶接中の操作

本項では、溶接中に溶接電流 / 電圧を調整する必要がある場合の操作について説明します。各シーケンス(初期条件 / 本条件 / クレータ条件)の溶接中に溶接電流 / 電圧を調整できます。

 /参 考
 アナログリモコン(別売品)を接続している場合は、タッチパネル側で本条件(本溶接)の溶接 電流/電圧を調整することができません。本条件の溶接電流/電圧は、アナログリモコン側で調 整してください。

(手順)

- 1. タッチパネルに「溶接電流」と「溶接電圧」の値が表示されていることを確認します。
- 2. 溶接電流を調整します。
 - タッチパネルで操作する場合は、タッチパネルの項目を選択し、溶接電流を調整してください。
 - リモコンで操作する場合は、リモコンの「溶接電流調整ツマミ」を回し、溶接電流を調整してください。
- 3. 溶接電圧を調整します。
 - タッチパネルで操作する場合は、タッチパネルの項目を選択し、溶接電圧を調整してください。
 - リモコンで操作する場合は、リモコンの「溶接電圧調整ツマミ」を回し、溶接電圧を調整してください。

/参 考

- 設定値表示中に、何も操作をしない状態が約5秒間継続すると、溶接中の電流 / 電圧値表示に戻ります。
- 内部機能(F48)を使用すると、トーチスイッチの操作で溶接電流の増加/減少を行うことができます。(クレータ有の設定で本条件のみ)(☞ 6.7 内部機能の設定)
- 「一元」メニューで「ON」を選択している場合は、電圧が電流値に応じた値に自動設定されます。

5.5.3 溶接終了後の操作

本項では、溶接終了後の電源 / シールドガスの供給停止手順について説明します。

(手順)

- 1. シールドガスの元栓を閉めます。
- 2.「ガスチェック」キーを押します。
 ⇒ タッチパネルに「ガスチェック」画面が表示され、ガス配管内に残っているシールドガスが排出されます。
- 3. シールドガスの排出後、「ガスチェック」キーを押します。

⇒ ガスチェックが停止します。

- 4. 流量調整ツマミを「SHUT」側に回し、シールドガスの流量をゼロにします。
- 5. 溶接電源の電源スイッチを OFF にします。
- 6. 入力電源を遮断します。
 - ⇒ 主電源表示灯が消灯します。
 - 配電箱の開閉器を操作して、入力電源を遮断してください。

第6章 溶接条件

本章では、操作パネルの機能や溶接条件の設定方法などについて説明します。

6.1 溶接条件リスト

本項では、溶接電源で設定可能なパラメータ / 機能について説明します。

6.1.1 パラメータ (溶接パラメータ)

パラメータ		設定範囲	初期値	内容
プリフロー時間		0~10秒	0.1 秒	溶接開始前のガス放流時間を設定します。
初期冬件 /	電流	20 ~ 400A	150A(本条件) 100A(初期 / クレータ)	初期条件:溶接開始直後の電流・電圧値を 設定します。
本条件 / クレータ条件	電圧(個別)	12.0 ~ 38.0V	19.0V(本条件) 18.5V(初期 / クレータ)	本条件:溶接中の電流・電圧値を設定します。
	電圧(一元)	$-100 \sim 100$	0	クレータ条件:浴接終了時の電流・電圧値 を設定します。
アフタフ	'ロー時間	0~10秒	0.4 秒	溶接終了後のガス放流時間を設定します。
アークスス	ポット時間	0.1~10秒	3秒	アークスポット時の溶接時間を設定します。
アーク特性		$- 99 \sim 99$	0	アークをハード〜ソフトな状態に設定します。
溶接条件:	メモリ番号	1~100	1	溶接条件を登録します。(100 個まで登録可能)

6.1.2 機能

機能	初期値	設定項目
溶接法	直流	直流 / 直流低スパッタ
ガス	CO ₂	CO ₂ / MAG / MIG(2%O ₂)
		軟鋼ソリッド(CO ₂ /MAG)/ 軟鋼フラックスコアード(CO ₂)/
ワイヤ材質	軟鋼ソリッド	ステンレスフラックスコアード(CO₂)/ ステンレスソリッド(MIG)/
		フェライト系ステンレスソリッド(MIG)
ワイヤ径 (mm)	1.2	0.8/0.9/1.0/1.2/1.4
初期条件	無	有/無
クレータ	無	無 / 有 / 有 (反復)/ アークスポット
溶接電圧調整	個別	一元 / 個別
溶込制御	無	有/無

6.1.3 内部機能(ファンクション)

内部機能の詳細(☞ 6.7 内部機能の設定)

記憶の欄に〇印を記したファンクションは、溶接条件と一緒にメモリ登録することができます。

番号	ファンクション名	設定範囲	初期値	内容	記憶
F1	機能無し	OFF(固定)	OFF	本機能はありません。	—
F2	リモコンによる機能切替	0/ 1/2/3/4/5/6	0	 アナログリモコンの切替ツマミに割り当てる機能を設定します。 0:機能無し 1:クレータ切替 2:ガスチェック 3:溶込制御 4:タックスタート 5:溶接条件読出し 6:溶接法切替 	_
F3	機能無し	OFF(固定)	OFF	本機能はありません。	—
F4	自動 / 半自動モード	0/1/2/3/4	0	溶接電源の I/O を設定します。 0:半自動機 1:自動機1 2:自動機2 3:アルメガ仕様 4:アルメガ仕様(高速通信用)	_
F5	外部指令電圧最大値	10.0/14.0/ 15.0	15.0 (V)	電流・電圧の指令値を外部から入力する場合、供給する電圧 の最大値を設定します。	_
F6	アップスロープ時間	0.0~10.0	0.0 (s)	初期条件から本条件へのスロープ時間を設定します。	\bigcirc
F7	ダウンスロープ時間	0.0 ~ 10.0	0.0 (s)	本条件からクレータ条件へのスロープ時間を設定します。	0

番号	ファンクション名	設定範囲	初期値	内容	記憶
F8	溶接結果表示時間	$0 \sim 60$	20 (s)	溶接終了後の電流 / 電圧の表示時間を設定します。	_
F9	アナログリモコン目盛	200/350	350 (A)	アナログリモコンで使用する目盛板の種類を設定します。	_
F10	モータ過電流 検出レベル	20~150	70 (%)	ワイヤ送給装置モータの定格電流に対する過電流警告のレベ ルを設定します。	_
F11	溶接条件メモリ微調整	OFF/1 ~ 30	OFF	メモリ登録した溶接条件の電流/電圧をアナログリモコンで 微調整する/しないを設定します。 OFF: 微調整しない 1~30: 微調整する(調整範囲の最大値をパーセントで設定	
F12	機能無し	OFF(固定)	OFF	本機能はありません。	_
F13	ターボスタート	OFF/ON	ON	ターボスタート機能の有効 / 無効を設定します。 OFF:無効 ON:有効	_
F14	スタート制御時間調整	$-50 \sim 50$	0 (%)	スタート電流の制御時間を調整します。	_
F15	スタート制御電流調整	$-100 \sim 100$	0 (A)	スタート電流を調整します。	_
F16	スローダウン速度調整	$-1.0 \sim 1.0$	0.0 (m/分)	スローダウンの速度を設定します。	0
F17	アンチスティック時間調整	$-50 \sim 50$	0 (10ms)	溶接終了時のワイヤの燃え上がり量をアンチスティック処理 の時間で調整します。	0
F18	アンチスティック電圧調整	$-9.9 \sim 9.9$	0.0 (V)	溶接終了時のワイヤの燃え上がり量をアンチスティック処理 の電圧で調整します。	0
F19	警告の設定切替	OFF/ON	OFF	警告レベル異常検出時の出力状態を設定します。 OFF:溶接電源の出力継続 ON:溶接電源の出力停止	
F20	入力電圧不足検出レベル	$140 \sim 220$	160 (V)	ー次側入力電圧不足時の電圧検出レベルを設定します。	-
F21	冷却ファン最大運転	OFF/ON	OFF	冷却ファンの運転モードを設定します。 OFF:省エネ運転 ON:常時最大速度で運転	-
F22	機能無し	OFF(固定)	OFF	本機能はありません。	-
F23	スリープモード 切替時間	0~10	0	溶接電源がスリープモードになるまでの時間を設定します。 0(OFF):無効 1~10:1~10分に設定できます。	_
F24	ワイヤ送り速度設定	OFF/ON	OFF	溶接条件の設定基準を設定します。 OFF:電流を基準 ON:ワイヤ送り速度を基準	-
F25 F26 F27 F28	外部出力1の設定(※1) 外部出力2の設定(※1) 外部出力3の設定(※1) 外部出力4の設定(※1)	0/4	0	プログラマブル I/O の出力端子の機能を設定します。	_
F29 F30 F31 F32	 外部入力1の設定 外部入力2の設定(※1) 外部入力3の設定(※1) 外部入力4の設定(※1) 	0~5	0	プログラマブル I/O の入力端子の機能を設定します。	_
F33	【くびれ】検知の 抑制率表示		_	F33 選択時は、タッチパネルに【くびれ】検知抑制率(%) を表示します。設定はできません。	_
F34	【くびれ】検知感度の 自動補正	OFF/ON	ON	【くびれ】検出感度の自動補正機能の有効 / 無効を設定しま す。 OFF:自動補正なし ON:自動補正あり	0
F35	【くびれ】検知感度の保存	OFF/ON	OFF	溶接終了時に【くびれ】検出感度の保存をする / しないを設 定します。 OFF:保存しない ON:次の溶接開始まで保存する	0
F36	スパッタ調整 P1P	$-100 \sim$	0	スパッタ調整に関する制御パラメータを設定します。	\cap
F37	スパッタ調整 P2P	100	Ť		<i></i>
F38	アーク電圧直接検出切替	0/1/2	0	アーク電圧を検出する箇所を切り替えます。 0:標準 1:母材側直接検出時 2:正極性(ワイヤマイナス)ワイヤ使用時	_
F39	出力電流ゲイン調整	$-10 \sim 10$	0 (A)	実際の出力電流値の調整用です。校正モードでのみ調整可能	
F40	出力電流ゲイン微調整	- 0.99 ~ 0.99	0.00 (A)	です。 溶接電流、電圧の校正が必要となった際に使用します。	—

第6章 溶接条件

<u> </u>
冶按宋件
波拉タ 供 ロ フ し
浴佞余件リスト

第6章

番号	ファンクション名	設定範囲	初期値	内容	記憶
F70	機能無し	OFF(固定)	OFF	本機能はありません。	—
F71	インターバル溶接機能	OFF/ON	OFF	出力中にアークの ON/OFF を繰り返すことでワークへの入熱 を制御します。	0
F72	インターバル溶接機能 アーク ON 時間	0.20 ~ 9.99	0.20 (s)	インターバル溶接機能を ON としたとき、アーク ON 時間を 設定します。	0
F73	インターバル溶接機能 アーク OFF 時間	1.00 ~ 9.99	1.00 (s)	インターバル溶接機能を ON としたとき、アーク OFF 時間を 設定します。	0
F74~ F76	機能無し	OFF(固定)	OFF	本機能はありません。	—
F77	溶接機識別番号	1~999	1	溶接管理機能の溶接機識別番号を設定します。	_
F78	意図しないトーチスイッチ 動作の防止	OFF/ON	OFF	プリフロー後 5 秒間溶接が行われなかった場合にエラーコー ドが表示されます。	_
F79	CAN 通信の接続機器切替 (※1)	0/1/2/3	0	CAN 通信に使用する通信機器を設定します。 0: デジタルリモコン 1: デジタルパネル(E-2628) 2: デジタルらくらくトーチ 3: デジタルらくらくフィーダ	_
F80	CAN 通信の通信速度切替 (※1)	0/1/2/3	0	CAN 通信に使用する通信速度を設定します。 0:500kbps 1:1Mbps 2:125kbps 3:250kbps	-
F81~ F82	機能無し	OFF(固定)	OFF	本機能はありません。	-
F83	スタート直後アーク長調整	$-20 \sim 10$	0	スタート直後のアーク長を調整します。	—
F84~ F85	機能無し	OFF(固定)	OFF	本機能はありません。	-
F86	電流表示調整 (GAIN)	$-20 \sim 20$	0 (%)	クッチパラルに実テナカス電法値を調整します	_
F87	電流表示調整 (OFFSET)	$-20 \sim 20$	0 (A)	グノノハベルにな小に11る电川胆で詞定しより。	
F88	電圧表示調整 (GAIN)	$-20 \sim 20$	0 (%)	タッチパラルに実テナカス電圧値を調整します	_
F89	電圧表示調整 (OFFSET)	$-2.0 \sim 2.0$	0.0 (V)	クノノハハルにな小に11る电圧 爬を 咧声 しよ У。	

※1:オプションボード (K8366B00) 使用時

溶接条件 操作パネルの機能

6.2 操作パネルの機能

本項では、操作パネルに配置されているタッチパネルおよびキーやツマミの機能について説明します。

6.2.1 操作パネル

第6章

名称		内容
タッチパネル		溶接電源を操作、設定変更を行うための各種メニューや項目から構成されています。 操作には、画面タッチまたは画操作ツマミを使用します。 選択中の項目は青いカーソルで確認することができます。
画面操作ツマミ		数値を設定するときや、項目を選択するときに使用します。 画面操作ツマミを回すと、青いカーソルが移動し選択する項目を変更できます。 数値を設定するときは、画面操作ツマミを回すと数値が増減します。 画面操作ツマミを押すと、選択中の項目や設定値を確定できます。
	「インチング」 キー	ワイヤを送給します。(SP 5.3 ワイヤのインチング) キーを押している間は、タッチパネルにワイヤ送給画面が表示され、ワイヤが送給されま す。 送給速度は、タッチパネルのワイヤ送給画面で調整することができます。 アナログリモコン(別売品)接続時は、アナログリモコンの溶接電流設定ツマミで調整す ることができます。
画面探作千一	「ガスチェッ ク」キー	シールドガスを放流します。(③ 5.2 電源投入とガス供給) キーを押すと、タッチパネルに「ガスチェック」画面が表示され、シールドガスが放流さ れます。 (約2分間放流し、自動的に放流を停止します。) 再度キーを押すとタッチパネルが元の画面に戻り、シールドガスの放流を停止します。
	「ホーム」キー	「ホーム」画面に切り替わります。 🖙 6.2.3 主要画面の機能について)

溶接条件 操作パネルの機能 第6章

6.2.2 タッチパネルの基本操作

タッチパネルの操作は、以下のいずれかで行います。

- タッチ操作:画面を指でタッチして操作します。
- ツマミ操作:画面操作ツマミを使って(回す、押す)操作します。
- キー操作:操作パネルのキーを押して操作します。

■タッチ操作について

動作	内容				
タッチする	タッチパネルの選択可能な項目をタッチし、操作・処理を行います。				
スワイプする	溶接電流・電圧など設定値をダイヤル操作で調整します。				
	「土」キーで設定値を調整	設定値などを調整する際に「±」キーを長押しすると、数値の増減 速度が上がります。			
長押しする	「キーロック」画面を解除	「キーロック」画面で鍵マークを3秒長押しすると、キーロック解除の処理に進みます。 (③ 5.4.2 操作パネルの誤操作防止)			
	「ホーム」画面のガイド機能切り替え	「ホーム」画面の溶接ガイド有効 / 無効を切り替えます。			

■ツマミ操作について

動作	内容			
回す	ツマミの操作に合わせて、青いカーソルがタッチパネル上の項目を移動します。			
押す	タッチパネル上で青いカーソルが乗っている項目の処理を実行します。			
	「土」キーで設定値を調整	設定値などを調整する際に「±」キーを長押しすると、数値の増減 速度が上がります。		
長押しする	「キーロック」画面を解除	「キーロック」画面で鍵マークを3秒長押しすると、キーロック解除の処理に進みます。 (☞ 5.4.2 操作パネルの誤操作防止)		
	「ホーム」画面のガイド機能切り替え	「ホーム」画面の溶接ガイド有効 / 無効を切り替えます。		

■キー操作について

「インチング」操作、「ガスチェック」操作、「ホーム」画面への切り替えに使用します。

■カーソルの表示について

画面上、選択されている項目は青いカーソルで表示されます。 操作をしない状態が 30 秒継続すると、青いカーソルの表示は消えます。

6.2.3 主要画面の機能について

本項では、タッチパネルに表示される主要な画面の機能と基本的な操作方法について説明します。

6.2.3.1 「ホーム」画面

溶接電源が正常に起動すると、通常「ホーム」画面が表示されます。「ホーム」画面は「標準モード」と「シンプル モード」の2種類あり、お好みで使い分けることができます。

- 「ホーム」画面を表示した状態で操作をせず 15 秒経過すると、待機画面が表示されます。「ホーム」画面へ戻した い場合は、タッチパネルをタッチするか、「ホーム」キーを押してください。
- 設定されている溶接条件から設定値などを変更した場合は、変更した項目と溶接番号が赤字で表示されます。

<標準モード>

■溶接条件エリア

番号	項目	内容	参照先
1	ホーム画面切替	項目を選択すると、「ホーム」画面を「標準モード」または「シンプル モード」に切り替えることができます。	—
2	溶接ガイド	現在設定している溶接継手および板厚が表示されます。 項目を3秒長押しすると、溶接ガイドを有効/無効に切り替えること ができます。溶接ガイド有効時に項目を選択すると、設定画面へ遷移 し、溶接継手および板厚を設定することができます。溶接ガイド無効 時は、項目がグレーアウトされます。	6.6.9 溶接ガイド
3	ワイヤ送給速度	現在設定しているワイヤ送給速度が表示されます。 項目を選択すると、設定画面へ遷移し、ワイヤ送給速度の値を調整す ることができます。 溶接ガイド有効時は、項目がグレーアウトされます。	_
4	溶接電流	現在設定している溶接電流が表示されます。 項目を選択すると、設定画面へ遷移し、電流の値を調整することがで きます。 溶接ガイド有効時は、項目がグレーアウトされます。	_

溶接条件 操作パネルの機能

第6章

番号	項目	内容	参照先
5	溶接電圧	現在設定している溶接電圧が表示されます。 項目を選択すると、設定画面へ遷移し、電圧の値を調整することがで きます。	_
6	電流微調整	現在設定している電流の微調整値が表示されます。 項目を選択すると、設定画面へ遷移し、電流を微調整することができ ます。溶接ガイド無効時は、項目がグレーアウトされます。	6.6.9 溶接ガイド
7	電圧一元調整	現在設定している電圧の一元調整値が表示されます。 溶接電圧の調整方法に一元を設定している場合、調整することができ ます。	6.6.6 溶接電圧の調整

■溶接モードエリア

番号	項目	内容	参照先
8	初期条件 / クレータ条件 / アークスポット	初期条件の有無および現在設定しているクレータ条件が表示されます。 項目を選択すると、設定画面へ遷移し、初期条件の有無、溶接終了時 のクレータ処理方法、またはアークスポットを選択することができま す。	6.6.4 クレータの設定 6.6.5 アークスポットの設定
9	溶接条件名	現在「ホーム」画面に表示されている溶接条件名が表示されます。 項目を選択すると「溶接条件(JOB)設定」画面へ遷移し、「ホーム」 画面に表示する溶接条件を選択することができます。	6.5.2 メモリ機能
10	溶接モード	現在設定している溶接モードが表示されます。 項目を選択すると、「溶接法」画面へ遷移し、「溶接法」、「ワイヤ材 質」、「ワイヤ径」、「ガス」を選択することができます。	6.6.2 溶接モードの設定

■タブエリア

番号	項目	内容	参照先
11	「メニュー」タブ	「メニュー」画面に切り替わります。	6.2.3.2 「メニュー」画面
12	「ホーム」タブ	「ホーム」画面に切り替わります。	本項
13	「溶接法」タブ	「溶接法」画面に切り替わります。	6.6.2 溶接モードの設定
14	「パラメータ」タブ	「パラメータ」画面に切り替わります。	6.6.3 溶接パラメータの設定
15	「その他」タブ	「その他」画面に切り替わります。	6.2.3.4 「その他」画面

<シンプルモード> 「標準モード」で「溶接ガイド」を有効に設定した場合、「電流」の項目がグレーアウトされ、設定することができませ ん。解除するには「標準モード」にて「溶接ガイド」を無効に設定してください。

_{電流} 150。	電圧	9 N.,	初期条件:有 クレータ:有
IJU A	-	J. 0V	直流 軟鋼ソリッド Φ1,2 CO2
初期条件 本:	条件	クレータ条件	個別

6.2.3.2 「メニュー」画面

タッチパネルの「メニュー」タブを選択すると、「メニュー」画面が表示されます。

番号	項目		内容	参照先
1	ファンクション		溶接電源の内部機能を設定します。	6.7 内部機能の設定
	溶接条件(JOB)設定		以下の3つのメニューを選択できます。	
		JOB 読出	メモリ登録されている溶接条件を内部メモリか ら読み出します。	6.5.2.2 溶接条件の読み出し
2		JOB 記憶	溶接条件を内部メモリに登録します。	6.5.2.1 溶接条件のメモリ登録
		IOB 詳細設定	JOB 編集:メモリ登録されている溶接条件を編 集します。	6.5.2.3 メモリ登録の編集
		500 叶桐政定	JOB 削除:メモリ登録されている溶接条件を削 除します。	6.5.2.4 メモリ登録の削除
3 溶接管理		管理	現在設定している「溶接回数」、「溶接時間」、 「ワイヤ消費量」、「平均値モニタ最大変動値」 の管理データを表示します。各項目を選択する と、設定画面へ遷移し、設定を調整することが できます。	7.2 溶接管理機能
4	言語		タッチパネルの言語を設定します。	7.7 タッチパネルの言語切替
	バックトア	クアップ/リス	以下の2つのメニューを選択できます。	
5		バックアップ	溶接条件などのデータを USB メモリにバック アップします。	7.3.5 バックアップ操作
		リストア	バックアップしたデータを本溶接電源に読み込 みます。	7.3.6 バックアップデータの読み込み操作
6	溶接	アドバイザ	溶接性の課題に対するアドバイスを確認できま す。	6.6.10 溶接アドバイザ
7	シス	テム設定	システム情報(ソフトウェアバージョンおよび 製造番号)の確認や、ディスプレイの明るさを 設定できます。	

50

6.2.3.3 「溶接法」画面

名称	内容	参照先
溶接法	 使用する溶接法の種類を選択します。 ワイヤ径、ワイヤ材質、ガス、および用途の組み合わせによっては、使用できない溶接法があります。使用できない溶接法は表示されません。 	
ワイヤ材質	 使用するワイヤ材質を選択します。 ワイヤ径、ガス、溶接法、および用途の組み合わせによっては、 使用できないワイヤ材質があります。使用できないワイヤ材質は 表示されません。 	- 6.6.1 溶接モードについて
ワイヤ径	 使用するワイヤ径を選択します。 ワイヤ材質、ガス、溶接法、および用途の組み合わせによっては、 使用できないワイヤ径があります。使用できないワイヤ径は表示 されません。 	┃6.6.2 溶接モードの設定 ┃
ガス	 使用するガスを選択します。 ワイヤ径、ワイヤ材質、溶接法、および用途の組み合わせによっては、使用できないガスがあります。使用できないガスは表示されません。 	

6.2.3.4 「その他」画面

項目	初期値	内容	参照先
アーク特性	0	アークをハード〜ソフトな状態に設定します。	6.6.7 アーク特性の調整
溶込制御	OFF	溶込制御を有効にします。 ON を選択するとワイヤ突出長が変化した場合でも、 常に一定の溶接電流になるようにワイヤ送給速度が 自動的に調整されます。 ON 時は、「その他」画面と「ホーム」画面の日時が 表示されているエリアに「溶込制御」アイコンが表 示されます。	6.6.8 溶込制御の調整
一元	OFF	溶接電流に対する溶接電圧を自動で決めるか否かを 選択します。	6.6.6 溶接電圧の調整
キーロック	OFF	キーロックの ON / OFF を切り替えます。	5.4.2 操作パネルの誤操作防 止

6.3 溶接条件について

本項では、基本的な溶接条件や便利な機能について説明します。

6.3.1 基本的な溶接条件

本項では、基本的な溶接条件について説明します。溶接を行うには、次の点を考慮する必要があります。

- 溶接部材の板厚、材質
- シールドガスの種類、および流量
- ワイヤ種類、ワイヤ径、および溶接法(溶接の種類)
- 溶接電流、および溶接電圧

6.3.2 便利な使い方

本項では、溶接電源の便利な機能について説明します。

- 溶接条件の登録(③ 6.5 溶接条件のメモリ機能)
 溶接条件のメモリ機能を使用すると、現在設定している溶接電流/電圧、シールドガスの種類、およびワイヤ種類/ワイヤ径などを登録し、読み出して使用することができます。
- 一元電圧調整(3) 6.2 操作パネルの機能)
 「一元 / 個別切替」機能を使用すると、溶接電流に応じた溶接電圧を自動設定できます。また、自動設定された溶 接電圧を微調整することもできます。
- 溶込制御(☞ 6.6.8 溶込制御の調整)
 溶込制御機能を使用すると、ワイヤ突出長が変化した場合でも、常に一定の溶接電流になるようにワイヤ送給速度を自動調整することができます。(軟鋼ソリッド、軟鋼フラックスコアード、SUS ソリッド、または SUS フラックスコアードのみ)
- トーチスイッチによる溶接電流調整(3)6.7 内部機能の設定)
 内部機能(F48)を使用すると、トーチスイッチの操作で設定された溶接電流に増加/減少を行うことができます。
 (クレータ有の設定で本条件のみ)

6.4 溶接条件の作成ガイド

本項では、基本的な溶接条件設定の流れについて説明します。

6.5 溶接条件のメモリ機能

本項では、溶接条件のメモリ機能について説明します。 溶接電源には、溶接条件を登録し、読み出して使用できる機能があります。登録できる溶接条件は、100 個です。1 個 の溶接条件には、次の内容を登録できます。

- タッチパネルで選択されている溶接モード(シールドガス / ワイヤ / クレータ / 溶込制御など)
- 溶接シーケンスごとの溶接電流 / 電圧(③ 6.6.3 溶接パラメータの設定)
- 内部機能の一部 (☞ 6.1.3 内部機能 (ファンクション))

▲ 注 意

- 溶接電源に記憶されるデータ(電子情報)は、静電気や衝撃、または修理などの理由 で、記憶内容が変化したり消失する恐れがあります。重要な情報は、必ず別に控えを 取ってください。
- 電子情報の変化や消失について、弊社は一切の責任を負いかねますので、あらかじめ ご了承ください。

/注 記

 アナログリモコン(別売品)を接続している場合、登録されている溶接条件を読み出しても、本 条件の電流値/電圧値は、アナログリモコン側の設定値が有効になります。

/参 考

- 内部機能(F44)を使用すると、登録された溶接条件をアナログリモコン(別売品)で読み出す ことができます。(☞ 6.7 内部機能の設定)
- ・ 内部機能(F11)を使用すると、読み出した溶接条件の電流値 / 電圧値をアナログリモコン(別 売品)で微調整することができます。(☞ 6.7 内部機能の設定)

第6章

溶接条件

溶接条件の作成ガイド

第6章 溶接条件 溶接条件のメモリ機能

6.5.1 溶接条件一覧画面の基本構成

溶接条件一覧画面で溶接電源に登録した溶接条件や未登録の溶接条件番号などを確認できます。選択する項目によって、溶接条件一覧画面の構成は若干異なります。

番号	名称	内容
1	トップエリア	リストのトップに現在設定中の溶接条件を表示します。 (選択する項目によっては、表示されない場合もあります。)
2	選択不可エリア	選択不可な溶接条件は、グレーのマスクで表示します。
3	現在位置マーク	現在表示されているページの位置を表示します。
4	戻る	前の画面へ戻ります。

6.5.2 メモリ機能

溶接電源のメモリ機能で、溶接条件のメモリ登録、読み出し、編集、削除を行うことができます。

6.5.2.1 溶接条件のメモリ登録

本項では、タッチパネルで設定している現在の溶接条件をメモリ登録する操作について説明します。

(手順)

1. メニュー>溶接条件(JOB) 設定> JOB 記憶

メニュー > JOB設定 > JOB記憶		
#0	直流 Fe 258. 1.2 mm, CO₂ 100 % 19.0 	A V
#1		
Project A #2	直流 Fe 200, 1.0 mm, CO2 100 % 19.0	01 25
		● 戻る

2. リストから溶接条件を登録する番号を選択します。

■溶接条件が未登録の番号を選択した場合:

- 溶接条件コメント入力画面が表示されます。キーボードから溶接条件コメントを入力し、「決定」を選択して ください。
- ⇒ 確認画面が表示されます。

X	メニュー > JOB設定 > JOB記憶													
					#								、 決	/ 定
	Esc !	@ 2	# 3	\$ 4	% 5	6	& 7	* 8	(9) 0	-	+=	-	
	~	Q	w	E	R	T	Y	U		0	Р	{ [} 1 \	
	Caps	A	s	D	F		Н		к				ОК	
	Lock	Z	×	С	v	В	N	М					Enter	

- 「決定」を選択します。
- ⇒ 選択した番号で溶接条件が登録され、「登録完了」画面が表示されます。
- ・ 操作をキャンセルする場合:「キャンセル」を選択すると前の画面へ戻ります。

■別の溶接条件が登録されている番号を選択した場合:

- 確認画面が表示されます。「決定」を選択してください。
- ⇒ 選択した番号で溶接条件が登録され、「登録完了」画面が表示されます。
- ・ 操作をキャンセルする場合:「キャンセル」を選択すると前の画面へ戻ります。
- ・ 詳細を確認する場合:「詳細」を選択します。

×==- X	> JOB設定 > JOB記憶
	#3にJOBを上書きしますか?
	キャンセル 詳細 決定

6.5.2.2 溶接条件の読み出し

本項では、メモリ登録されている溶接条件を読み出す操作について説明します。

- /参 考
 - タッチパネルで設定している現在の溶接条件は、読み出された溶接条件に書き替わります。現在 の溶接条件を保存したい場合は、先に溶接条件のメモリ登録を行ってください。

(手順)

1. メニュー>溶接条件(JOB) 設定> JOB 読出

- 2. リストから読み出す溶接条件を選択します。
 - ⇒ 確認画面が表示されます。

×==- >	→ JOB設定 → JOB読出
	#3のJOBを読出しますか?
	*ヤンセル 詳細 決定

3.「決定」を選択します。

- ⇒ 選択した溶接条件が読み出され、「ホーム」画面へ戻ります。 「ホーム」画面上の電流値 / 電圧値などは、読み出したものに変更されます。
- ・ 操作をキャンセルする場合:「キャンセル」を選択すると前の画面へ戻ります。
- ・ 詳細を確認する場合:「詳細」を選択すると溶接条件の詳細画面が表示されます。

6.5.2.3 メモリ登録の編集

本項では、メモリ登録されている溶接条件を編集する操作について説明します。

/注 記
 ・ 編集したデータは、元に戻せません。編集する条件番号をよく確認してください。

	0 E =	

1. メニュー>溶接条件(JOB) 設定> JOB 詳細設定> JOB 編集

メニュー > JOB設定	➤ JOB詳細設定	▶ JOB編集		
#0		直流 Fe 1.2mm, CO2 100% 	258A 19.0V	
#2 Project A		直流 Fe 1.0mm, CO2 100%	200A 19.0V	01 25
				€

2. リストから編集する溶接条件を選択します。

- ⇒ 「パラメータ」画面が表示されます。
- ・ 編集する溶接条件を変更したい場合は、「キャンセル」を選択すると前の画面へ戻ります。

3. 溶接条件の編集を行います。

- 編集する項目を選択し、任意の設定に変更してください。
 (☞ 6.6.3.3 溶接パラメータの設定)
- 4. 設定が完了したら、「決定」を選択します。
 - ⇒ 選択した条件番号で編集した溶接条件が登録され、「JOB 編集」画面へ戻ります。 登録された溶接条件は、読み出しで使用できます。

6.5.2.4 メモリ登録の削除

本項では、メモリ登録されている溶接条件を削除する操作について説明します。

/注 記
 ・ 削除したデータは、復活できません。削除する条件番号をよく確認してください。

(手順)

- 1. メニュー>溶接条件(JOB) 設定> JOB 詳細設定> JOB 削除
- 2. リストから削除する溶接条件を選択します。
 - ⇒ 確認画面が表示されます。

メニュー	> JOB記憶 > JOB削除	
	#3のJ0Bを削除	しますか?
	キャンセル	ок

3.「決定」を選択します。

⇒ 再度確認画面が表示されます。

×=	>JOB記憶 >JOB削除		
	#3のJ0Bを削除 ^{本当に削除しますか?}	しますか?	
	キャンセル	ок	

4.「決定」を選択します。

- ⇒ 選択した溶接条件が削除され、前の画面へ戻ります。
- 削除した溶接条件が登録されていた場所は、空欄になります。
- ・ 操作をキャンセルする場合:「キャンセル」を選択すると前の画面へ戻ります。

6.6 溶接条件の設定

本項では、溶接条件(溶接モード、溶接パラメータなど)の設定方法について説明します。

6.6.1 溶接モードについて

シールドガスやワイヤ材質等の種類によって、組み合わせ可能な物と組み合わせができない物があります。 本製品で選択できる溶接モード(可能な組み合わせ)は、次のとおりです。

<標準仕様 >

溶接法	ガス(※1)	ワイヤ材質	ワイヤ径 (mm)	用途	溶込制御
		軟鋼ソリッド	0.6/0.8/0.9/1.0/1.2	半自動	可能
	CO ₂	軟鋼フラックスコアード	1.0/1.2/1.4	半自動	可能
		ステンレスフラックスコアード	0.9/1.2	半自動	可能
直流	MAG	軟鋼ソリッド	0.6/0.8/0.9/1.0/1.2	半自動	可能
	MIG (2%O ₂)	ステンレスソリッド	0.8/0.9/1.0/1.2	半自動	可能
		フェライト系 ステンレスソリッド	0.8/0.9/1.0/1.2	半自動	可能
直流 低スパッタ (※2)	CO ₂	軟鋼ソリッド	0.8/0.9/1.0/1.2	半自動	—
	MAG	軟鋼ソリッド	0.9/1.0/1.2	半自動	_
	MIG	ステンレスソリッド	0.9/1.0/1.2	半自動	_
	(2%O ₂)	フェライト系ステンレスソリッド	0.9/1.0/1.2	半自動	-

※1:シールドガスの混合比が下記と異なる場合は、一元などの適正条件が合わないことがあります。
 MAG ガス:アルゴン (Ar)80% + 炭酸ガス (CO₂)20%
 MIG ガス (ステンレス用):アルゴン (Ar)98% + 酸素 (O₂)2%

※2:従来の CM-7403 を使用して直流低スパッタで溶接される場合、以下の製品を使用する必要があります。詳細について は、それぞれの取扱説明書をご覧ください。

ワイヤ送給装置:CM-7403 + K5952E00(電圧検出アダプタ)

6.6.2 溶接モードの設定

溶接モードは「溶接法」画面で設定します。

- (手順)
- 1. タブエリアから「溶接法」タブを選択します。

溶接法			
*	溶接法	直流	
Ø	材質	軟鋼ソリッド	
\bigcirc	ワイヤ径	Φ1.2	
	ガス	Х СО2	
—	一元	圖別	
:: *==-	↑ ホーム	<u>「八</u> 」 パラメータ その他	

- 2. 溶接法、ワイヤ材質、ワイヤ径、ガス、一元/個別の各項目を設定します。
 - 各項目を選択し、それぞれの設定画面に切り替えてください。
 - 選択候補から任意の設定を選択してください。
- < 例 > 溶接法の設定画面

溶接法	
* 溶接法	直流パルス
	直流
	直流低スパッタ
	直流ウェーブパルス
	MS-MIG
	直流TIG
	直流手溶接

6.6.3 溶接パラメータの設定

本項では、溶接パラメータ(ガス放流時間、溶接電流 / 電圧)の設定方法について説明します。溶接パラメータは、溶 接シーケンスに沿って設定します。

6.6.3.1 溶接シーケンス

溶接シーケンスは、プリフロー / 本条件 / アフタフローを基本とし、クレータの設定によっては、初期条件とクレータ 条件のシーケンスも付加されます。これらのシーケンスにガス放流時間、溶接電流 / 電圧を設定する必要があります。

各シーケンスの内容は、次のとおりです。

プロセス	内容
プリフロー	溶接開始前にガスを放流するシーケンスです。
初期条件	溶接開始部分を処理するシーケンスです。
本条件	本溶接にあたるシーケンスです。
クレータ条件	クレータ部分を処理するシーケンスです。
アフタフロー	溶接終了後のガスを放流するシーケンスです。

6.6.3.2 溶接パラメータ画面の基本構成

番号	名称	内容
1	本条件に対する溶接電流(%)	各プロセスの本条件に対する電流値をパーセンテージで表示します。 任意の項目を選択すると、設定値を変更することができます。
2	溶接電圧 / 溶接電流	各プロセスの溶接電圧と溶接電流を表示します。 任意の項目を選択すると、設定値を変更することができます。
3	ガス放流時間	各プロセスのガス放流時間を表示します。 選択すると、設定値を変更することができます。

溶接条件 溶接条件の設定 第6章

番号	名称	内容
4	溶接モードエリア	設定中の溶接モードを表示します。 選択すると「溶接法」画面が表示され、設定を変更できます。 🖙 6.6.2 溶接モードの設 定)
5	溶接条件名	設定中の溶接条件名を表示します。 選択するとキーボード画面が表示され、溶接条件名を変更することができます。
6	溶接条件番号	設定中の溶接条件の番号を表示します。 選択すると溶接条件一覧画面が表示され、パラメータに表示する溶接条件を変更すること ができます。
7	クレータ条件	溶接終了時のクレータ処理方法、またはアークスポットを表示します。 選択すると、クレータ条件を変更することができます。
8	詳細設定エリア	選択すると、設定中の溶接条件の詳細設定画面を表示します。 設定できる項目は「溶込制御」、「アーク長」、「一元」、「スタート設定」、および「ファン クション」です。
9	決定	選択すると、設定中の溶接条件が確定します。
10	「電流/ワイヤ送給」切替	#2の項目に「電流」または「ワイヤ送給」を表示します。 選択すると、表示する値を「電流」または「ワイヤ送給」に切り替えることができます。
11	戻る	選択すると、各種設定中の操作をキャンセルして前の画面に戻ります。

6.6.3.3 溶接パラメータの設定

- 1. ガス放流時間を設定します。
 - 設定するプロセスのガス放流時間を選択してください。
 - ダイヤル操作または「±」キー操作でガス放流時間を設定してください。

- 2.「OK」を選択します。
 - ⇒ ガス放流時間が確定し、「パラメータ」画面に戻ります。
- 3. 溶接電流を設定します。
 - 設定するプロセスの溶接電流を選択してください。
 - ダイヤル操作または「±」キー操作で溶接電流を設定してください。

4.「OK」を選択します。

⇒ 溶接電流が確定し、「パラメータ」画面に戻ります。

5. 溶接電圧を設定します。

- 設定するプロセスの溶接電圧を選択してください。
- ダイヤル操作または「±」キー操作で溶接電圧を設定してください。
 一元モード時:溶接電流に応じて自動的に設定される溶接電圧を基に微調整します。
 個別モード時:溶接電圧を溶接電流とは無関係に設定します。

6.「OK」を選択します。

⇒ 溶接電圧が確定し、「パラメータ」画面に戻ります。

/参 考

- 上記のモード切り替えは、「一元」メニューで行ってください。(🖙 6.6.6 溶接電圧の調整)
- 「一元」メニューで設定したモードは、「初期条件」/「本条件」/「クレータ条件」の全てに適用 されます。
- 7. 必要に応じ、以下の操作を行います。
 - クレータの設定(③ 6.6.4 クレータの設定)
 - 溶接条件の登録(③ 6.5.2.1 溶接条件のメモリ登録)

6.6.4 クレータの設定

本項では、クレータ処理の詳細、およびトーチスイッチの操作について説明します。

6.6.4.1 クレータの各モードについて

クレータの設定は、「パラメータ」画面で項目を選択して設定します。

クレータの設定に関しては、次のモードがあります。初期条件の有無は、「初期条件」メニューで選択します。

モード	初期条件の有無	内容
「クレータ無」	_	本溶接のみの溶接になります。 (3) 6.6.4.2 クレータ無)
「クレータ有」	無	本溶接後、クレータ条件で溶接ができます。(3) 6.6.4.3 クレータ有 (初期条件無し))
	有	上記に加え、本溶接の前に初期条件で溶接ができます。 (3) 6.6.4.4 クレータ有 (初 期条件有り))
「クレータ有」 (反復)	無	本溶接後、クレータ条件で溶接ができます。さらに、クレータ処理後も2秒以内に トーチスイッチを ON にすると、再度クレータ条件で溶接ができます。(③ 6.6.4.3 クレータ有 (初期条件無し))
	有	上記に加え、本溶接の前に初期条件で溶接ができます。 (3) 6.6.4.4 クレータ有(初 期条件有り))
「アークスポット」	_	アークスポットによる溶接ができます。 🎯 6.6.5 アークスポットの設定)

「クレータ無」モードの場合でも内部機能(F45)を使用すると、本溶接の前に初期条件での溶接、本溶接後はクレータ条件での溶接ができます。(☞ 6.7.2.30 F45/F46/F47:特殊クレータシーケンス(有効/初期時間設定/クレータ時間設定))

6.6.4.2 クレータ無

「クレータ条件」メニューで「クレータ無」を選択します。

・ トーチスイッチの ON/OFF 操作に同期して、溶接を開始 / 停止します。

6.6.4.3 クレータ有(初期条件無し)

「クレータ条件」メニューで「クレータ有」を選択し、「初期条件」メニューで「初期条件無」を選択します。

- トーチスイッチの ON/OFF 操作を 2回行って溶接します。2回目の ON 操作でクレータ電流による溶接になります。
- 本溶接中は、トーチスイッチを OFF にしても自己保持します。(クレータ処理中は、トーチスイッチを ON にした まま保持してください。)

6.6.4.4 クレータ有(初期条件有り)

「クレータ条件」メニューで「クレータ有」を選択し、「初期条件」メニューで「初期条件有」を選択します。

- トーチスイッチの ON/OFF 操作を 2回行って溶接します。最初の ON から OFF までの操作が初期電流による溶接、 2回目の ON 操作でクレータ電流による溶接になります。
- 本溶接中は、トーチスイッチを OFF にしたときに自己保持します。(初期溶接中、およびクレータ処理中は、トー チスイッチを ON にしたまま保持してください。)

6.6.4.5 クレータ反復

「クレータ条件」メニューで「クレータ有(反復有)」を選択します。

- クレータ処理までのトーチスイッチの操作は、「クレータ有」溶接と同一です。(③ 6.6.4.3 クレータ有 (初期条件 無し))
- クレータ処理では、トーチスイッチを OFF にしても 2 秒以内に ON にすると、再度クレータ電流で溶接ができま す。(繰り返すことで何度でも、クレータ電流で溶接ができます。)

6.6.5 アークスポットの設定

本項では、アークスポットの詳細、およびトーチスイッチの操作について説明します。 「クレータ条件」メニューで「アークスポット」を選択すると、本モードになります。

- トーチスイッチを ON にし続けて溶接します。アークスポット設定時間が経過すると、自動的に溶接が停止します。
- アークスポット設定時間は、「クレータ条件」メニューで「アークスポット」を選択すると調整することができます。
- アークスポット設定時間が経過するまでにトーチスイッチを OFF にした場合は、その時点からアンチスティック処理を開始します。

/参 考

アークスポット溶接を行う場合は、アークスポット用ノズル(別売品)をお買い求めください。 アークスポット用ノズルの詳細については、ご使用のトーチの取扱説明書をご覧ください。

第6章

溶接条件 溶接条件の設定 第6章 溶接条件 溶接条件の設定

6.6.6 溶接電圧の調整

本項では、溶接電圧の調整方法について説明します。溶接電圧の調整は、一元 / 個別のいずれかで行うことができます。

<u>/参</u>考

- シールドガスの混合比が規定値と異なる場合は、一元などの適正条件が合わないことがあります。 (☞ 6.6.1 溶接モードについて)
- 設定中および溶接中に表示される電圧は、ワイヤ送給装置と溶接電源の出力端子(母材側)間の 電圧です。
- 母材側 / トーチ側ケーブルやトーチケーブルを延長している場合、電圧降下を考慮し、あからじ め少し高めに設定電圧を調整してください。

(手順)

1. その他 > 一元

その他				
Ø Water	水冷	OFF	アーク特性	
€	溶込制御	OFF		
	キーロック			
-	一元	OFF		
: :: ×=	- ホーム	✓ 「 溶接法 パラメ	▲ タ その他	● 戻る

■一元モード

「一元」メニューで ON を選択すると、「一元」モードになります。

- 溶接電圧は、溶接電流に応じた値に自動設定されます。
- 自動設定された電圧値に対し、タッチパネルで選択し微調整できます。(マイナス:溶接電圧低め / プラス:溶接 電圧高め)

■個別モード

- 「一元」メニューで OFF を選択すると、「個別」モードになります。
- 溶接電圧は、タッチパネルで選択し調整できます。
6.6.7 アーク特性の調整

本項では、アーク特性(アーク状態)の調整方法について説明します。本機能を使用すると、アーク状態をハードまた はソフトに調整できます。

(手順)

- 1. その他 > アーク特性
- 2. アーク特性を調整します。

3.「OK」を選択します。

⇒ アーク特性の設定値が登録され、前の画面へ戻ります。

- 低い電流域ではハードに、高い電流域ではソフトに調整することで、良好な溶接を行える傾向に あります。
- 母材側 / トーチ側ケーブルやトーチケーブルを延長している場合は、ハードに調整することで、 良好な溶接を行える傾向にあります。

第6章

溶接条件 溶接条件の設定

6.6.8 溶込制御の調整

本項では、溶込制御の調整方法について説明します。本機能を使用すると、ワイヤ突出長が変化した場合でも、常に一定の溶接電流となるように、ワイヤ送給速度が自動調整されます。

母材の溶込深さやビード幅の変化を少なくする効果が得られます。特に、溶込深さを一定にしたい場合に有効です。

1. その他 > 溶込制御

- ⇒ 溶込制御が ON に切り替わります。
- ⇒ 溶込制御実行中は、本画面と「ホーム」画面のトップに溶込制御アイコンが表示されます。
- ・ 操作をキャンセルする場合:再度「溶込制御」を選択すると、OFF に切り替わります。

その他			
Water	水冷	OFF 📥 アーク特性	
●	溶込制御	ON	
	キーロック		
—	一元	OFF	
::: ×=	- ホーム 溶	産 接法 パラメータ その他	り 戻る

参 考

- 「溶込制御」はパラメータ > 詳細設定画面からでも設定できます。
- 「溶込制御」は、本溶接中のみ機能し、初期溶接中やクレータ処理中は機能しません。また、 アークスポット溶接の場合も、機能しません。
- 「溶込制御」は「溶接法」メニューで「直流」を選択している場合に使用できます。

6.6.9 溶接ガイド

「溶接継手」、「板厚」を設定することで、各項目に応じた溶接電流を自動的に設定できます。

(手順)

1. ホーム > 溶接ガイドを3秒間長押しします。

⇒ 「溶接ガイド」が有効に切り替わります。

電流微調整

2. 溶接継手を設定します。

● 「隅肉」または「重ね」を選択します。

- 3. 板厚を設定します。
 - ダイヤル操作または「±」キー操作で設定値を調整してください。
 - 「±」キーの値は 0.1mm ごとに調整できます。
 - 値は溶接電流、ワイヤ送給速度、電圧と連動しており、それらの設定値に合わせて変更します。

4.「OK」を選択します。

- ⇒ 溶接継手・板厚の設定が登録され、「ホーム」画面へ戻ります。
- 自動設定される電流値を微調整したい場合は、ホーム画面の電流微調整機能を使用して微調整できます。 電流を低めに微調整する:電流微調整をマイナスに設定 電流を高めに微調整する:電流微調整をプラスに設定

/参 考

- 設定できる板厚には上限 / 下限があります。
- 各溶接条件の組み合わせによっては、溶接ガイド機能を使用できない場合があります。

6.6.10 溶接アドバイザ

本機能を使用して、溶接性の課題に関するアドバイスを確認することができます。

- 1. メニュー > 溶接アドバイザ
 - ⇒ 溶接性に関する課題を表示する画面に遷移します。

2. 解決したい課題を選択します。

- ⇒ 選択した課題に対する解決策が表示されます。
- ファンクションの設定で解決可能な場合は、該当のファンクションが表示され、そこから設定を変更すること ができます。

X	- -	▶ 溶接アドバイザ			
	溶け込 <i>a</i> っ っ おけ込み ※溶 またはS	み深さが安定しない場合は溶排 み深さが安定しない場合は、済 よが直流選択時の材質が軟鋼↓ U&フラックスコアード選択時	後電流、電圧、	速度が適切でない可能性がございま を推奨しております。 フラックスコアード、SUSソリッド、 -	
	€	溶込制御	OFF		
					● 戻る

6.7 内部機能の設定

本項では、内部機能(ファンクション)の設定方法、およびその詳細について説明します。 内部機能は、溶接電源をさらに便利に使用していただくために、お客様の使用環境に合わせて変更することができま す。

6.7.1 内部機能の設定方法

本項では、内部機能の設定方法について説明します。 内部機能の詳細(③ 6.7.2 各内部機能の詳細)

<u> /参 考</u>

 内部機能は、設定値を変更した時点から有効になります。内部機能の設定値を変更する場合は、 ファンクション番号(内部機能の番号)に誤りがないこと、および機能の設定が正しいことをよく確認してください。

■ファンクション設定画面の基本構成

番号	名称	内容
1	ファンクションタイトル	選択中のファンクション番号およびファンクション名が表示されます。
2	ファンクション詳細	選択中のファンクションの機能および詳細設定が表示されます。
3	現在の設定	現在の設定が表示されます。
4	設定変更エリア	青いカーソルで項目を選択し、設定を変更することができます。設定中の項目には、 チェックマークが表示されます。 (表示される項目は、選択するファンクションによって異なります。)
5	戻る	前の画面に戻ります。

(手順)

- 1. メニュー > ファンクション
- 2. リストから設定対象のファンクションを選択します。

メニュー > ファンクション		
F11 溶接条件メモリ微調整	OFF	
F12		A
F13 ターボスタート	ON	20
F14 スタート制御時間調整	+ 0 %	
F15 スタート制御電流調整	+ 0 _A	● 戻る

- 3. 設定変更エリアから、ファンクションの設定を行います。
 - ON/OFF 選択タイプの場合は、「ON/OFF」のいずれかを選択してください。

-בבא	- > ファンクション	
	F13 ターポスタート	
	ターボスタート機能の有効/無効を設定します。 OFF: 無効 ON: 有効	Off Off
		♪ 戻る

● 値入力タイプの場合は、ダイヤル操作または「±」キーで設定値を調整してください。

第6章

● 固定値選択タイプの場合は、設定対象の項目を選択してください。

יב⊐א	- > ファンクション	
	F5 外部指令電圧最大值	15 v
	電流・電圧指令の指令値を外部から入力する場合、供給する 電圧の最大値を設定します。	10 v 14 v ✓ 15 v
		予 戻る

● 番号選択タイプの場合は、設定対象の番号を選択してください。

メニ	דב איז איז די	ンクション										
	F52 デ	ータログの選択										
	10.9	之 值		1	2	2	4	5	6	7	9	✓ 0 (5)
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1.121111111111111111111111111111111111	x	x	∠ √	-3 -√	- -	x	x	x	x	
	/ 11 11 电 / 11	実測	×	~	x	\checkmark	\checkmark	\checkmark	x	\checkmark	x	(1)
	溶接電圧	設定	×	×	~	×	x	\checkmark	~	x	x	$\overline{2}\overline{7}$
		実測	x	~	x	 ✓ 	х	~	~	х	~	
	送給速度	設定	X	х	√	x	х	x	х	\checkmark	\checkmark	(3)(8)
		実測	x	\checkmark	x	×	\checkmark	x	\checkmark	✓	\checkmark	
												戻る

4. 設定が完了したら、「戻る」を選択すると前の画面へ戻ります。

溶接条件 内部機能の設定

6.7.2 各内部機能の詳細

第6章

本項では、内部機能の詳細について、ファンクション番号の番号順に説明します。 内部機能(ファンクション)一覧(☞ 6.1.3 内部機能(ファンクション))

6.7.2.1 F2: リモコンによる機能切替

アナログリモコン(別売品)の切替ツマミに割り当てる機能を設定します。 次表の「1」~「6」から選択します。「0」に設定すると機能は割り当てられません。

設定値	機能名称
0	機能無し
1	クレータ切替(🖙 6.6.4 クレータの設定)
2	ガスチェック(🖙 5.2 電源投入とガス供給)
3	溶込制御(🞯 6.6.8 溶込制御の調整)
4	タックスタート(🞯 6.7.2.37 F54:タックスタート処理)
5	溶接条件読出し(③ 6.7.2.29 F44:リモコンによる溶接条件 読み出し)
6	溶接法切替(③ 6.6.2 溶接モードの設定)

切替ツマミ操作の詳細は「6.8 アナログリモコン(別売品)の操作」を参照してください。

溶接条件 内部機能の設定 第6章

6.7.2.2 F4:自動/半自動モード

溶接電源をロボットや自動機と組み合わせる場合は、溶接電源の I/O(インターフェース)を用途に合わせて設定できます。

設定「0」~「2」については、次のとおりです。設定「3」と「4」は弊社ロボット専用のモードです。詳細について は、弊社ロボット制御装置の取扱説明書をご覧ください。

百日	設定							
	0(半自動モード)	1(自動機1モード)	2(自動機2モード)					
動作停止の解除	外部接続用端子台 TM4 の 3-4 番 (動作停止端子)を短絡させたあ と、電源を再投入します。(※4)	外部接続用端子台 TM4 の 3-4 番((※4)	動作停止端子)を短絡させます。					
溶着解除電圧(※1)	出力しません。	アンチスティック終了後に約 0.2 秒	間出力します。					
溶接電流 / 電圧設定	操作パネル、またはリモコンで設 定します。	外部からの指令電圧で 設定しま す。(※2)	操作パネル、またはリモコンで設 定します。					
インチング	操作パネル、またはリモコンで操 作します。	操作パネルで操作、またはアナログ 6番を短絡させます。 2 3 <アナログリモコン 上図は、溶接電源の前面に配置され トを、正面から見た場合の図です。						
リトラクト機能(※3)	使用できません。	使用できます。						
異常の解除	異常原因を取り除いたあと、電源 を再投入します。	異常原因を取り除いたあと、電源を または外部接続用端子台 TM4 の 3 させます。(※4)	:再投入します。 4 番(動作停止端子)を開放 / 短絡					

※1:自動機モードでは、アンチスティック処理をしたあと、溶着を解除するための電圧を約 0.2 秒間出力します。この電 圧は、ワイヤが溶着していない場合でも出力されます。

※2:外部からの指令電圧は、下図のようにアナログリモコンコンセントの端子(1-3 番、1-4 番)に入力してください。 また、入力と出力の関係は、「F5:外部指令電圧最大値」に示すグラフのとおりです。(☞ 6.7.2.3 F5:外部指令電圧 最大値)

起動信号を入力する 100ms 以上前には、指令電圧を確実に入力してください。 外部電源の電流容量は、0.5mA 以上のものを使用してください。

▲注 意

E1 と E2 は、電圧を 0 ~ 15V の範囲で供給してください。
 15V を超えると、溶接電源の制御回路が損傷する恐れがあります。

- ※3:自動機モードでは、内部機能 F29 ~ F32(外部入力端子の設定)を使用し、リトラクト機能を外部入力端子に割り当 てることができます。
 - リトラクト機能の詳細(🞯 6.7.2.20 F29 ~ F32:外部入力端子の設定)
- ※4:外部接続用端子台の詳細(③ 4.5 自動機との接続)

※5:アナログリモコンコンセントの適合プラグ:仕様 DPC25-6A-1H-Z/ 部品番号 4730-009

6.7.2.3 F5:外部指令電圧最大值

内部機能 F4(自動/半自動モード)を「1」(自動機1モード)に設定して使用する場合は、外部から入力する指令電圧の最大値を設定します。

10V、14V、または 15V から選択してください。

下図に、指令電圧と溶接電流/電圧の関係を示します。 (下図は、目安にしてください。外部入力線(指令電圧線)や母材側/トーチ側ケーブルなどの配線長さ・引き回し、 およびワイヤ突出長の相違などにより、実際の出力は、下図とは異なることがあります。)

6.7.2.4 F6:アップスロープ時間

初期電流と本電流の差が大きい場合は、初期溶接から本溶接に切り替わるタイミングでワイヤが燃え上がることがあり ます。このような場合は、初期電流から本電流に切り替える時間(アップスロープ時間)を長めに設定します。

• アップスロープ時間の設定範囲: 0.0 ~ 10.0 秒

6.7.2.5 F7:ダウンスロープ時間

本電流とクレータ電流の差が大きい場合は、本溶接からクレータ処理に切り替わるタイミングでワイヤが突っ込む(ワ イヤの減速が追いつかず、慣性で送給されてしまう)ことがあります。このような場合は、本電流からクレータ電流に 切り替える時間(ダウンスロープ時間)を長めに設定します。

• ダウンスロープ時間の設定範囲:0.0~10.0秒

6.7.2.6 F8:溶接結果表示時間

溶接終了時に、溶接電流値と溶接電圧値がタッチパネルに点滅表示され「溶接時間」、「熱量」などが表示されます。このときの点滅表示時間を設定します。

点滅表示される値は、溶接終了直前の1秒間の平均値です。

溶接結果表示時間の設定範囲:0~60秒

6.7.2.7 F9:アナログリモコン目盛

アナログリモコン(別売品)のご使用時、アナログリモコンの目盛を設定します。 溶接電源の定格出力電流によって、使用できるアナログリモコンの目盛および目盛板は異なります。

溶接電源の定格出力電流	使用できる目盛および目盛板
350A	350/200
500A	500/350/200

目盛板は、500A用、350A用、200A用のそれぞれが用意されています。設定したアナログリモコン目盛に合わせ、目盛板を取り替えてください。(③ 6.8 アナログリモコン(別売品)の操作)

• 低い電流域で使用する場合は、「200」に設定すると便利です。

6.7.2.8 F10:モータ過電流検出レベル

ワイヤ送給装置モータの過電流検出レベルを設定します。

ライナの摩耗やチップ不良など、ワイヤの送給ライン部の接触抵抗が大きく、かつ送給ロールに滑りがない場合は、 モータ電流が増加します。このモータ電流を監視することで、送給ラインの不良を判断できます。

モータ定格電流の20~150%の範囲で設定してください。

- 出荷時の設定は、モータ定格電流(連続)の70%です。
 モータに流れる電流が設定値を超えると、タッチパネルに「E-820」の異常コードが表示されますが、溶接電源の
 出力は停止しません。
- ワイヤや溶接トーチなどの使用環境、およびお客様の判定基準に準じ、任意に設定してください。

6.7.2.9 F11:溶接条件メモリ微調整

アナログリモコン(別売品)ご使用時に、読み出した溶接条件の電流値 / 電圧値をアナログリモコンで微調整します。 本機能は、内部機能 F4(自動 / 半自動モード)を「0」に設定している場合に使用できます。

- 「OFF」:本機能は無効です。
- 「1」~「30」:本機能が有効になります。アナログリモコンの溶接電流調整ツマミで電流の微調整、溶接電圧調整 ツマミで電圧の微調整ができます。
 - 溶接条件メモリ微調整の設定範囲:1~30%
 - 調整ツマミを中央に合わせたときは、メモリ登録されている溶接条件の電流値/電圧値になります。電流値/ 電圧値は、調整ツマミの中央を基準に調整します。電流値/電圧値を低くしたい場合は調整ツマミを反時計回りに回し、高くしたい場合は調整ツマミを時計回りに回してください。

- 次の場合は、本機能を使用できません。
 - 溶接条件がメモリ登録されていない場合
 - アナログリモコン(別売品)が接続されていない場合
 - 内部機能 F44(リモコンによる溶接条件読み出し)が「ON」(有効)に設定されている場合
 - 内部機能 F45(特殊クレータシーケンス)が「ON」(有効)に設定されている場合
 - 内部機能 F48(トーチスイッチ操作による電流調整)が「ON」(有効)に設定されている場合
 - 内部機能 F51(特殊クレータ反復)が「ON」(有効)に設定されている場合
 - 内部機能 F29 ~ F32(外部入力端子の設定)のいずれかが「4」(起動)または「5」(溶接条件読み出し)に 設定されている場合
 - 内部機能 F4(自動 / 半自動モード)が「0」(半自動モード)以外に設定されている場合

6.7.2.10 F13:ターボスタート

溶接電源には、溶接スタートを良くするために、コンデンサ放電によるターボスタート機能が付いています。

- 「ON」:本機能が有効になります。
- 「OFF」:本機能は無効です。

第6章

溶接条件 内部機能の設定

第6章 溶接条件

6.7.2.11 F14/F15:スタート制御時間 / 電流調整

溶接スタート時の制御時間 / 電流を設定します。

溶接スタート時の制御時間 / 電流は、設定された溶接条件に基づき、最適な値に自動設定されます。溶接スタート時に 適切なワイヤの燃え上がりが得られない場合は、スタート制御時間 / 電流を調整してください。

ワイヤの燃え上がりを大きくする場合は、スタート制御時間 / 電流を大きくします。 ワイヤの燃え上がりを小さくする場合は、スタート制御時間 / 電流を小さくします。

- 内部機能 F14(スタート制御時間調整)により、スタート制御時間を-50~50%の範囲で設定してください。
- 内部機能 F15(スタート制御電流調整)により、スタート制御電流を-100~100Aの範囲で設定してください。

6.7.2.12 F16:スローダウン速度調整

トーチスイッチを ON にしてから実際にアークが発生するまでの間のワイヤ送給速度(スローダウン速度)を設定します。

ワイヤ送給速度は、設定された溶接法(ワイヤ種類)やワイヤ径に基づき、最適な値に自動設定されますが、手動で設 定したい場合は、本機能で調整できます。

調整範囲は ±1.0m/ 分ですが、0.4m/ 分より遅くすることはできません。「0」を標準としてマイナスで遅く、プラスで 速くなります。

アーク点弧後すぐに短絡してしまいスタートに失敗する場合は、マイナス(ワイヤ送給速度を遅く)に設定してください。

標準のワイヤ送給速度でスタートが悪くない場合は、プラス(ワイヤ送給速度を速く)に設定することで、溶接タクト 時間を短縮できることがあります。

6.7.2.13 F17/F18:アンチスティック時間 / 電圧調整

アンチスティック時間 / 電圧(アンチスティック処理時間 / 電圧)を設定します。この時間 / 電圧を最適に調整すると、 次の効果を得ることができます。

- 溶接終了時、ワイヤが母材に溶着しないようになります。
- ワイヤ先端の形状を整えて、次回の安定したスタートを得ることができます。

アンチスティック時間/電圧は、設定された溶接法(ワイヤ種類)やワイヤ径に基づき、最適な値に自動設定されます が、溶接終了時にワイヤが溶着したり、燃え上がりすぎる場合は、本機能で調整できます。

- 内部機能 F17(アンチスティック時間調整)により、アンチスティック処理時間を ±50(単位:0.01秒)の範囲 で調整してください。「0」を標準としてマイナスで短く、プラスで長くなります。
- 内部機能 F18(アンチスティック電圧調整)により、アンチスティック処理電圧を ±9.9V の範囲で調整してくだ さい。「0」を標準としてマイナスで低く、プラスで高くなります。

6.7.2.14 F19:警告の設定切替

警告発生時、溶接電源の出力を停止させることができます。

異常コードの一部については、異常を検出しても溶接電源の出力を停止しない警告レベルがあります。そのため、異常 コードの表示に気付かないことがありますが、本機能を使用することで、溶接電源の出力を停止させることができま す。

- 「ON」:警告が発生すると、溶接電源の出力は停止します。
- 「OFF」:警告が発生しても、溶接電源の出力は停止しません。

異常コードの解除について(☞ 9.1 エラー発生時の対処)

6.7.2.15 F20:入力電圧不足検出レベル

1次側電源の入力電圧不足検出レベルを設定します。1次側電源電圧が本機能で設定した値を下回ると、異常コードが 表示されます。

140~220Vの範囲で設定してください。

/参 考

出荷時は、160V に設定されています。しかし、溶接電源の入力電圧の仕様は、180 ~ 242V で あるため、この範囲を下回る場合は、溶接性に影響することがあります。

6.7.2.16 F21:冷却ファン最大運転

冷却ファンを常時最大速度で回転させることができます。

- 「ON」:冷却ファンは、常時最大速度で回転します。「ON」に設定する場合でも、使用率を超えないように注意してください。(③ 2.1.4 使用率について)
- 「OFF」:冷却ファンは、溶接終了から10分後に自動的に停止します。本モードは、消費電力を抑える効果、余分な粉じんを吸い込まないようにする効果があります。

6.7.2.17 F23:スリープモード切替時間

溶接電源を一定の時間操作しなかった場合に、スリープモード(休止モード)にすることができます。

- 「0」:本機能は無効です。
- 「1」~「10」:本機能が有効になります。
 スリープモードへの移行時間を1~10分の範囲で設定してください。スリープモード中は、消費電力を抑える効果があります。
 - スリープモード中は、タッチパネル上の表示が全て消灯します。
 - スリープモード中にタッチパネル上をタッチ、または操作キーを選択すると元の状態に復帰します。

第6音

溶接条件 内部機能の設定

6.7.2.18 F24:ワイヤ送り速度設定

ワイヤ送給速度を基準にして溶接電流を自動設定できます。

- 「ON」:本機能が有効になります。
 - 溶接電流は、ワイヤ送給速度を基準に自動設定されます。
 - 「ガス」メニューなどで溶接モードを変更した場合でも、設定したワイヤ送給速度を基準にして、溶接電流が 自動設定されます。
 - 溶接電流表示に切り替えると、自動設定された溶接電流値を確認することができます。
 - 溶接電源を自動機モードで使用する場合、指令電圧とワイヤ送給速度の関係については、下図をご覧ください。(内部機能 F4(自動 / 半自動モード)を自動機1モードに設定して使用する場合)

/参 考

- 指令電圧を最大にしたときのワイヤ送給速度は、22m/分です。(溶接モードによっては、ワイヤ送給速度が 22m/分まで上がらないこともあります。)
- ワイヤ送給最低速度は、0.6 ~ 2.0m/分程度です。(溶接モードにより異なります。)低い指令電 圧を入力した場合でも、この速度以下にすることはできません。
- 「OFF」:本機能は無効です。
 - ワイヤ送給速度は、溶接電流を基準に自動設定されます。
 - 「ガス」メニューなどで溶接モードを変更した場合でも、設定した溶接電流を基準にして、ワイヤ送給速度が 自動設定されます。
 - ワイヤ送給速度表示に切り替えると、自動設定されたワイヤ送給速度を確認することができます。
 - 溶接電源を自動機モードで使用する場合、指令電圧と溶接電流の関係については、「6.7.2.3 F5:外部指令電圧 最大値」のグラフをご覧ください。(内部機能 F4(自動/半自動モード)を自動機1モードに設定して使用す る場合)

6.7.2.19 F25 ~ F28:外部出力端子

外部出力端子の機能を設定します。(ロボットや自動機のご使用時)

- F25:外部接続用端子台 TM4 の OUT-EXT1 (3-4)の機能を設定します。
- F26:外部接続用端子台 TM4 の OUT-EXT2 (5-6)の機能を設定します。
- F27:外部接続用端子台 TM4 の OUT-EXT3 (7-8)の機能を設定します。
- F28:外部接続用端子台 TM4 の OUT-EXT4 (9-10)の機能を設定します。

外部接続用端子台の詳細(3 4.5 自動機との接続)

F25~F28に設定できる機能は、次表のとおりです。

設定	機能名称	内容
0	_	機能は割り当てられません。
1~3	-	標準仕様では選択できません。
4	溶接監視アラーム	溶接監視アラーム(🞯 7.2.2.4 溶接監視)の発生時に端子間が短絡します。

第6章

溶接条件 内部機能の設定

6.7.2.20 F29 ~ F32:外部入力端子の設定

外部入力端子の機能を設定します。(ロボットや自動機のご使用時)

- F29:外部接続用端子台 TM3の IN-EXT1 (5-9)の機能を設定します。
- F30:外部接続用端子台 TM3 の IN-EXT2(6-9)の機能を設定します。
- F31:外部接続用端子台 TM3 の IN-EXT3 (7-9)の機能を設定します。
- F32:外部接続用端子台 TM3 の IN-EXT4 (8-9)の機能を設定します。

外部接続用端子台の詳細(③ 4.5 自動機との接続)

F29~F32に設定できる機能は、次表のとおりです。

設定	機能名称	内容
0	—	機能は割り当てられません。
1	ガスバルブ	端子間を短絡させることで、ガスバルブが開きます。(※1)
2	インチング	端子間を短絡させることで、インチングを行います。
3	リトラクト	端子間を短絡させた上でインチング操作を行うと、ワイヤ送給モータが逆回転し、ワイヤを巻き戻しま す。(※2)
4	起動	端子間を短絡させることで、溶接を開始します。(トーチスイッチの ON と同じ機能です。)(※3)
5	溶接条件読み出し	信号を組み合わせることで、メモリ登録されている溶接条件を読み出すことができます。 「直流低スパッタ」で溶接しているとき、「直流低スパッタ」以外の溶接法が設定されている溶接条件を 読み出しても、溶接法は「直流低スパッタ」のまま切り替わることはありません。また、「直流低ス パッタ」以外の溶接法から「直流低スパッタ」に切り替わることもありません。溶接法の切り替えは、 待機中に行えます。(※4)

※1:外部入力端子の信号でガスバルブを開いた場合は、溶接終了時やタイマ(2分間)でガスバルブが閉じません。シー ルドガスの放流を停止させるときは、必ず端子間を開放してください。

※2:インチングの信号を ON する前に、外部入力端子間を短絡してください。また、ワイヤの送給を停止させるときは、 インチング信号を OFF にしてから端子間を開放してください。

※3:溶接電源正面にある送給装置コンセントの起動端子は、無効になります。

※4:外部入力端子の信号を組み合わせることで、メモリ登録されている条件番号1~16(登録番号1~16)の溶接条件 を読み出すことができます。読み出せる条件番号と信号の関係は、次表のとおりです。

条件番号	ファンクション(外部入力端子)				
(登録番号)	F29(IN-EXT1)	F30(IN-EXT2)	F31(IN-EXT3)	F32(IN-EXT4)	
1	OFF(開)	OFF(開)	OFF(開)	OFF(開)	
2	ON (閉)	OFF(開)	OFF(開)	OFF(開)	
3	OFF(開)	ON (閉)	OFF(開)	OFF(開)	
4	ON (閉)	ON (閉)	OFF(開)	OFF(開)	
5	OFF(開)	OFF(開)	ON (閉)	OFF(開)	
6	ON (閉)	OFF(開)	ON (閉)	OFF(開)	
7	OFF(開)	ON (閉)	ON (閉)	OFF(開)	
8	ON (閉)	ON (閉)	ON (閉)	OFF(開)	
9	OFF(開)	OFF(開)	OFF(開)	ON (閉)	
10	ON (閉)	OFF(開)	OFF(開)	ON (閉)	
11	OFF(開)	ON (閉)	OFF(開)	ON (閉)	
12	ON (閉)	ON (閉)	OFF(開)	ON (閉)	
13	OFF(開)	OFF(開)	ON (閉)	ON (閉)	
14	ON (閉)	OFF(開)	ON (閉)	ON (閉)	
15	OFF(開)	ON (閉)	ON (閉)	ON (閉)	
16	ON (閉)	ON (閉)	ON (閉)	ON (閉)	

「5」を設定していない外部入力端子は、信号が OFF として認識されます。従って、読み出す条件番号に「ON」の状態を必要 としないファンクション(外部入力端子)については、他の機能を設定することができます。

例1)条件番号3の溶接条件を読み出す場合(その1):

F30 を「5」に設定し、外部入力端子 IN-EXT2 の信号を ON にすることで、条件番号 3 が読み出されます。F29、F31、および F32 には、他の機能を設定することができます。

例 2)条件番号 3 の溶接条件を読み出す場合(その 2):

F29 ~ F32 を「5」に設定し、外部入力端子 IN-EXT2 の信号を ON、他の外部入力端子の信号を OFF にすることでも、条件番号 3 が読み出されます。

例 3)条件番号 7 の溶接条件を読み出す場合:

F30/F31 の 2 つを「5」に設定し、外部入力端子 IN-EXT2/IN-EXT3 の 2 つの信号を ON にすることで、条件番号 7 が読み出されます。F29/F32 には、他の機能を設定することができます。

例:

F29:「5」/F30:「0」/F31:「5」/F32:「0」に設定した場合の例では、次のようなフローになります。

- トーチスイッチ ON(起動信号「ON」)の100ms 前には、F29~32に「5」を設定し、使用する溶接条件(条件番号)を読み出しておいてください。
- 同時に複数の信号(スイッチ)を切り替える場合は、40ms 以内で行ってください。
- トーチスイッチ OFF(起動信号「OFF」)の 40ms 前から 100ms 後の間は、外部入力端子の設定で、「5」を設定した端子の信号を変更しないでください。

第6章

溶接条件 内部機能の設定

6.7.2.21 F33:【くびれ】検知の抑制率表示

【くびれ】を検知するタイミングがずれてくると、スパッタの発生につながります。本機能では、溶接開始から溶接終 了までの【くびれ】検知の抑制率(%)を確認することができます。

- 抑制率は溶接終了後に本機能 F33 を選択すると、タッチパネルに表示されます。
- トーチスイッチを空打ちした時のように、スパッタ抑制制御を一度も行わなかった場合には、「-1」表示となります。
- 本機能 F33 を選択した状態で、溶接を行うこともできます。
- 溶接が不安定な場合は、抑制率も低くなることがあります。このときは、最初に溶接条件を見直してください。
- 溶接が安定している場合でも、抑制率が70%以下のときは、内部機能F36/F37(スパッタ調整)を使用し、【くびれ】検知感度を調整してください。(③ 6.7.2.24 F36/F37:スパッタ調整(P1P/P2P) また、電圧検出ケーブルの接続 / 配線(引き回し)に問題がないことを確認してください。

/参 考

短絡とアークを繰り返すショートアーク溶接において、スパッタの多くは短絡発生時とアーク発生直前に発生します。後者のアーク発生直前には、下図に示す【くびれ】と言われる現象がワイヤに発生します。

この【くびれ】を検出し、その瞬間に電流を急激に下げると溶融金属がアーク力で吹き飛ばなく なり、スパッタを減少させることができます。そのため、【くびれ】を正確に検知することが重 要になります。

6.7.2.22 F34:【くびれ】検知感度の自動補正

【くびれ】検知感度を自動補正するか否かを設定します。

- 「ON」:【くびれ】検知感度を自動補正します。
- 「OFF」:【くびれ】検知感度を自動補正しません。内部機能 F36/F37(スパッタ調整)を使用し、検知感度を手動 で設定することができます。(☞ 6.7.2.24 F36/F37:スパッタ調整(P1P/P2P))

/参考

【くびれ】検知感度は、溶接法(ワイヤ種類)やワイヤ径ごとに、最適な値に設定されています。 しかし、溶接環境(母材側/トーチ側ケーブル、トーチケーブルなどの長さや引き回し)や溶接 施工条件(作業姿勢、重ねや隅肉といった溶接条件やワイヤ突出し)などの要因によっても最適 となる【くびれ】検出感度は変わるため、感度のズレがスパッタの増加につながります。

6.7.2.23 F35:【くびれ】検知感度の保存

内部機能 F34(【くびれ】検知感度の自動補正)で自動補正された感度について、溶接終了時に初期値に戻すか否かを 設定します。(初期値:内部機能 F36/F37(スパッタ調整)で設定されている値)

- 「ON」:溶接終了時の検知感度を、次回の溶接開始時にも使用します。(溶接終了時の条件と次回の溶接開始時の条件が大きく異なる場合には、溶接開始時のスパッタが多くなることがあります。)
 「ON」にして使用する場合は、内部機能F34(【くびれ】検知感度の自動補正)も「ON」に設定してください。
- 「OFF」:溶接終了時の検知感度を初期値に戻します。
 溶接開始時のスパッタが多い場合は、次の手順で初期値を調整してください。

(手順)

- 1. 内部機能 F36/F37(スパッタ調整)を再設定します。(☞ 6.7.2.24 F36/F37:スパッタ調整(P1P/P2P))
- 2. 内部機能 F34(【くびれ】検知感度の自動補正)を「ON」に設定します。
 - <u>参考</u> ・ 溶接部位3
 - 溶接部位ごとに突出しや溶接条件が大きく変わる場合、本機能 F35 は「OFF」での使用を推奨し ます。

6.7.2.24 F36/F37:スパッタ調整(P1P/P2P)

【くびれ】検知感度を手動で設定する場合に使用します。本機能は、内部機能 F34(【くびれ】検知感度の自動補正)を「OFF」に設定している場合に使用できます。

ここでの設定手順は、次のとおりです。

(手順)

- 1. 内部機能 F34(【くびれ】検知感度の自動補正)を「OFF」に設定します。
- 2. 内部機能 F36(スパッタ調整(P1P))を表示させ、F36 が表示している状態で、溶接を行います。
- 3. 内部機能 F36 の設定値を任意に増減させ、再度溶接を行います。
 - 溶接が良好な状態になるまで繰り返し、- 100 ~ 100 の範囲で設定値を変更してください。
- 4. 内部機能 F37(スパッタ調整(P2P))を表示させ、F37 が表示している状態で、溶接を行います。
- 5. 内部機能 F37 の設定値を任意に増減させ、再度溶接を行います。
 - 手順3と同様に、溶接が良好な状態になるまで繰り返し、-100~100の範囲で設定値を変更してください。

6.7.2.25 F38:アーク電圧直接検出切替

直流低スパッタモード以外でトーチ側または母材側ケーブルを延長すると、スパッタが異常に多く発生することがあり ます。その場合、電圧検出ケーブルを使用し、本機能を「1」に設定することで、改善できることがあります。

電圧検出ケーブルの接続について(③ 4.2.4 母材側電圧検出ケーブルの接続)

- 0:標準(トーチ側:送給装置、母材側:溶接機母材端子)
- 1:母材側直接検出用(トーチ側:送給装置、母材側:直接検出端子)
- 2:正極性(ワイヤマイナス)ワイヤ用(トーチ側、母材側共に溶接機出力端子)

第6章

溶接条件 内部機能の設定

/参 考

- 電圧検出ケーブル(別売品)は、延長ケーブルの長さが往復で 30m を超える場合を目安とし、 使用してください。
- ・ 正極性(ワイヤマイナス)ワイヤ使用時は、本機能を「2」に設定してください。
- 直流低スパッタモードまたは延長ケーブルを使用する場合は、母材側電圧検出ケーブルを接続の うえ、本機能を「1」に設定してください。
- 本機能の「2」は、溶接法が「直流」のときのみ設定可能です。
 - F2、F29 ~ F32、F44 のファンクションに含まれる「溶接条件の読み取り」では、溶接法が 「直流」になっている溶接条件のみ読み取り可能です。
 - 本機能を「2」に設定したまま、「直流」以外の溶接法へ変更することはできません。他の溶 接法に変更する場合は、必ず本機能を「0」または「1」に設定してください。

6.7.2.26 F39/F40:出力電流ゲイン調整

タッチパネルに表示される電流表示値と実際の出力電流値に相違がある場合は、F39/F40を調整することにより校正を 実施することができます。

F39 は値[1]で約1Aの変化量、F40 は値[0.01]で約0.01Aの変化量となります。

本機能は「校正モード」でのみ調整可能となります。詳細は「7.6 校正モード」を参照してください。

本機能の設定は、不用意に変更しないでください。

6.7.2.27 F41/F42:出力電圧ゲイン調整

タッチパネルに表示される電圧表示値と実際の出力電圧値に相違がある場合は、F41/F42を調整することにより校正を 実施することができます。

F41 は値[0.1]で約 0.1V の変化量、F42 は値[0.01]で約 0.01V の変化量となります。

本機能は「校正モード」でのみ調整可能となります。詳細は「7.6校正モード」を参照してください。

/注 記
 ・ 本機能の設定は、不用意に変更しないでください。

6.7.2.28 F43 : CAN ID

CAN 通信機器との接続時に使用する場合は、CAN 用 ID を設定します。

6.7.2.29 F44: リモコンによる溶接条件読み出し

メモリ登録された溶接条件をアナログリモコン(別売品)で読み出すか否かを設定します。本機能は、内部機能 F4 (自動 / 半自動モード)を「0」に設定している場合に使用できます。

- 「ON」:アナログリモコン(別売品)で溶接条件を読み出します。
 - アナログリモコンの溶接電流調整ツマミを目盛板「条件番号」の「1」~「10」に合わせることで、条件番号 1~10に登録された溶接条件を読み出すことができます。
 - 読み出された溶接条件の電圧値を溶接電圧調整ツマミで微調整することもできます。(%調整)
 - 電圧値は、溶接電圧調整ツマミの中央を基準に調整します。電圧値を低くしたい場合は調整ツマミを反時計回りに回し、高くしたい場合は調整ツマミを時計回りに回してください。
 - 電圧値の微調整幅は、最大で ±20% です。

例: 右の図は条件番号「3」を読み出し、電圧値はメモリ登録されてい る溶接条件と同一(微調整なし)にした場合の例です。

- 「OFF」:本機能は無効です。
- 次の場合は、本機能を使用できません。
 - 溶接条件がメモリ登録されていない場合
 - アナログリモコン (別売品) が接続されていない場合
 - 内部機能 F11(溶接条件メモリ微調整)が「1」~「30」(有効)に設定されている場合
 - 内部機能 F45(特殊クレータシーケンス)が「ON」(有効)に設定されている場合
 - 内部機能 F48(トーチスイッチ操作による電流調整)が「ON」(有効)に設定されている場合
 - 内部機能 F51(特殊クレータ反復)が「ON」(有効)に設定されている場合
 - 内部機能 F29 ~ F32(外部入力端子の設定)のいずれかが「4」(起動)または「5」(溶接条件読み出し)に 設定されている場合
 - 内部機能 F4(自動 / 半自動モード)が「0」(半自動モード)以外に設定されている

6.7.2.30 F45/F46/F47:特殊クレータシーケンス(有効/初期時間設定/クレータ時間設定)

「クレータ無」の溶接シーケンスに、初期条件およびクレータ条件を利用できます。初期条件の有無は、「ホーム」画面の「初期条件」メニューで選択します。 (☞ 6.2.3.1 「ホーム」画面)

- 内部機能 F45 を「ON」に設定すると、「クレータ無」溶接時でも、F46/F47 で設定した時間、初期溶接 / クレータ処理を行うことができます。
- 「ON」に設定中は、ホーム画面に「特殊クレータ」と表示され、内部機能 F46 と F47 が有効になります。
- 内部機能 F46 には、初期溶接の時間を設定します。0.0 ~ 10.0 秒の範囲で設定してください。
- 内部機能 F47 には、クレータ処理の時間を設定します。0.0~10.0 秒の範囲で設定してください。

/参 考

- 内部機能 F45 を「ON」に設定した場合は、自動的に「特殊クレータ」溶接の設定となり、他の 溶接モードは使用できません。(「クレータ条件」メニューは、機能しません。)
 クレータ処理中の溶接法は、本溶接中の溶接法と同じです。
- 次の場合は、本機能を使用できません。
 - 内部機能 F11 (溶接条件メモリ微調整)が「1」~「30」(有効)に設定されている場合
 - 内部機能 F44(リモコンによる溶接条件読み出し)が「ON」(有効)に設定されている場合
 - 内部機能 F48(トーチスイッチ操作による電流調整)が「ON」(有効)に設定されている場合
 - 内部機能 F51(特殊クレータ反復)が「ON」(有効)に設定されている場合
 - 内部機能 F29 ~ F32(外部入力端子の設定)のいずれかが「5」(溶接条件読み出し)に設定されている場合

第6章

溶接条件 内部機能の設定

6.7.2.31 F48:トーチスイッチ操作による電流調整

溶接電流をトーチスイッチの操作で増加 / 減少させることができます。

- 「ON」:「クレータ有」溶接の設定となり、本溶接(自己保持中)中の溶接電流をトーチスイッチのシングルクリック/ダブルクリック操作で、増加/減少させることができます。
- 電流増減量は、内部機能 F49(シングルクリックによる電流増減量)と F50(ダブルクリックによる電流増減量) で設定してください。
- 「OFF」:本機能は無効です。

/参 考

- 「ON」に設定した場合は、自動的に「クレータ有」溶接の設定となり、他の溶接モードは使用できません。(「クレータ条件」メニューは、機能しません。)
- シングルクリック / ダブルクリックの 2 通りの増減量を設定することができます。
- ・ シングルクリック / ダブルクリック操作は、0.3 秒以内で行ってください。
- クレータ処理への移行時は、トーチスイッチを0.3 秒以上押してください。

例:

クレータ有 / 初期条件無 / 溶接電流 100A/ クレータ電流 60A/F48:「ON」/F49:「- 10」/F50:「20」に設定した場合の例では、次のようなフローになります。

- 次の場合は、本機能を使用できません。
 - 内部機能 F11(溶接条件メモリ微調整)が「1」~「30」(有効)に設定されている場合
 - 内部機能 F44(リモコンによる溶接条件読み出し)が「ON」(有効)に設定されている場合
 - 内部機能 F45(特殊クレータシーケンス)が「ON」(有効)に設定されている場合
 - 内部機能 F51(特殊クレータ反復)が「ON」(有効)に設定されている場合
 - 内部機能 F29 ~ F32(外部入力端子の設定)のいずれかが「4」(起動)または「5」(溶接条件読み出し)に 設定されている場合

6.7.2.32 F49:シングルクリックによる電流増減量

溶接電流をトーチスイッチの操作で増加 / 減少させる場合は、シングルクリック時の電流増減量を設定します。本機能は、内部機能 F48(トーチスイッチ操作による電流調整)を「ON」に設定している場合に使用することができます。

• シングルクリックによる電流増減を-100~100Aの範囲で設定してください。

6.7.2.33 F50:ダブルクリックによる電流増減量

溶接電流をトーチスイッチの操作で増加/減少させる場合は、ダブルクリック時の電流増減量を設定します。本機能は、内部機能 F48(トーチスイッチ操作による電流調整)を「ON」に設定している場合に使用することができます。

・ ダブルクリックによる電流増減を- 100 ~ 100A の範囲で設定してください。

6.7.2.34 F51:特殊クレータ反復

「クレータ有(反復有)」溶接の本溶接(自己保持中)時、トーチスイッチの操作で本溶接とクレータ処理を何度でも切り替えることができます。初期条件の有無は、「ホーム」画面の「初期条件」メニューで選択します。(③ 6.2.3.1 「ホーム」画面)

- 「ON」:「特殊クレータ有(反復有)」溶接の設定となり、本溶接(自己保持中)中にトーチスイッチのシングルクリック操作で、クレータ処理に移行できます。また、クレータ処理に移行後も、トーチスイッチのシングルクリック操作で、本溶接に戻ることができ、この切り替え操作は何度でも行えます。本機能を有効にすると、「ホーム」 画面の「クレータ条件」メニューに「特殊クレータ反復」と表示されます。(3) 6.2.3.1 「ホーム」画面)
- 「OFF」:本機能は無効です。

/参 考

- 「ON」に設定した場合は、自動的に「クレータ有(反復有)」溶接の設定となり、他の溶接モードは使用できません。(「クレータ条件」メニューは、機能しません。)
- ・ シングルクリック操作は、0.3 秒以内で行ってください。
- 溶接終了時は、トーチスイッチを 0.3 秒以上押してください。

例:

初期溶接電流 80A/本溶接電流 100A/クレータ電流 60A に設定した場合の例では、次のようなフローになります。

- 次の場合は、本機能を使用できません。
 - 内部機能 F11(溶接条件メモリ微調整)が「1」~「30」(有効)に設定されている場合
 - 内部機能 F44(リモコンによる溶接条件読み出し)が「ON」(有効)に設定されている場合
 - 内部機能 F45(特殊クレータシーケンス)が「ON」(有効)に設定されている場合
 - 内部機能 F48(トーチスイッチ操作による電流調整)が「ON」(有効)に設定されている場合
 - 内部機能 F29 ~ F32(外部入力端子の設定)のいずれかが「4」(起動)または「5」(溶接条件読み出し)に 設定されている場合

第6章 溶接条件

第6章

溶接条件 内部機能の設定

6.7.2.35 F52: 簡易データログ機能のデータの種類

簡易データログ機能を使用する場合の保存データを選択します。 設定値と保存できるデータの組み合わせは、次のとおりです。

設定	溶接電流	溶接電流	溶接電圧	溶接電圧	送給速度	送給速度
	(設定値)	(実測値)	(設定値)	(実測値)	(設定値)	(実測値)
0	-	—	—	—	—	—
1	-	保存可	-	保存可	-	保存可
2	保存可	—	保存可	-	保存可	—
3	保存可	保存可	-	保存可	-	—
4	保存可	保存可	-	-	-	保存可
5	-	保存可	保存可	保存可	-	—
6	-	-	保存可	保存可	-	保存可
7	-	保存可	-	-	保存可	保存可
8	_	_	_	保存可	保存可	保存可

簡易データログ機能について(③ 7.3 データのバックアップ(データの活用))

6.7.2.36 F53:データログ機能サンプリング間隔

簡易データログ機能を使用する場合のデータサンプリング間隔を選択します。 設定値とデータサンプリング間隔の関係は、次のとおりです。

設定	サンプリング間隔
1	10ms
2	100ms
3	1s

簡易データログ機能について(③ 7.3 データのバックアップ(データの活用))

6.7.2.37 F54:タックスタート処理

溶接終了後、ワイヤ送給速度をスローダウンさせず、本送給の速度でスタートさせることができます。(移行時間を少なくしたタック溶接が可能になります。)

- 「ON」:溶接終了後、0.5 秒以内にトーチスイッチを押すことで、本送給のワイヤ送給速度でスタートさせることが できます。(ただし、スタートまでのワイヤ送給速度は、上限が 5m/分に制限されます。)
- 「OFF」:本機能は無効です。

6.7.2.38 F55 ~ F59:未使用

本機能は、他社自動機との接続時に使用します。

6.7.2.39 F67:電流値の変更設定(初期条件、クレータ条件)

「クレータ有」選択時、初期条件およびクレータ条件の電流値を、本条件に対するパーセンテージで変更することができます。

- 「ON」:本機機能が有効になります。 初期条件の電流値を F68 で、クレータ条件の電流値を F69 で設定してください。
- 「OFF」:本機能は無効です。

6.7.2.40 F68: 電流値の設定(初期条件)

初期条件での電流値を、本条件に対するパーセンテージで設定できます。 本機能を使用する場合は、F67 を ON にします。

10~300%の範囲で設定してください。

6.7.2.41 F69: 電流値の設定(クレータ条件)

クレータ条件での電流値を、本条件に対するパーセンテージで設定できます。 本機能を使用する場合は、F67 を ON にします。

10~300%の範囲で設定してください。

6.7.2.42 F71:インターバル溶接機能

入熱を制御するためにアークの ON/OFF を繰り返す機能です。

- 「ON」:本機能が有効になり、内部機能 F72 と F73 が設定可能となります。
- 「OFF」:本機能は無効です。

/参 考

「ON」に設定した場合は、自動的に「クレータ無」溶接の設定となり、他の溶接モードは使用できません。(「クレータ切替」メニューは、機能しません。)

溶接条件 内部機能の設定

- 次の場合は、本機能を使用できません。
 - 内部機能 F11(溶接条件メモリ微調整)が「1」~「30」(有効)に設定されている場合
 - 内部機能 F44(リモコンによる溶接条件読み出し)が「ON」(有効)に設定されている場合
 - 内部機能 F45(特殊クレータシーケンス)が「ON」(有効)に設定されている場合
 - 内部機能 F48(トーチスイッチ操作による電流調整)が「ON」(有効)に設定されている場合
 - 内部機能 F29 ~ F32(外部入力端子の設定)のいずれかが「5」(溶接条件読み出し)に設定されている場合
 - 内部機能 F51 (特殊クレータ反復)が「ON」(有効)に設定されている場合

6.7.2.43 F72: アーク ON 時間の設定(インターバル機能)

インターバル溶接機能においてアーク ON 時間を設定します。

• アーク ON 時間を 0.20 ~ 9.99 秒の範囲で設定してください。

6.7.2.44 F73: アーク OFF 時間の設定(インターバル機能)

インターバル溶接機能においてアーク OFF 時間を設定します。

• アーク OFF 時間を 1.00 ~ 9.99 秒の範囲で設定してください。

6.7.2.45 F77:溶接機識別番号

溶接管理機能を使用する場合の溶接機の識別番号を設定します。

本機能で設定した識別番号は溶接管理機能のデータをバックアップする際にファイル名の一部となります。 (3) 7.3.4 溶接管理機能について)

識別番号の設定範囲:1~999

6.7.2.46 F78: 意図しないトーチスイッチ動作の防止

予期しないトーチスイッチの動作を防止するために、プリフロー後、溶接が一定の時間行われない場合、エラーコード を出力するかどうか設定をします。

- 「ON」:溶接がプリフロー後5秒間行われない場合は、エラーコード「E-011」がタッチパネル上に表示され、溶接 電源の出力が停止します。(③ 9.1 エラー発生時の対処)
- 「OFF」:本機能は無効です。

6.7.2.47 F79:CAN 通信の接続機器切替

CAN 通信に使用する通信機器を設定します。

デジタルリモコンを使用する場合は「0」、デジタルパネル(送給装置取り付け)を使用する場合は「1」※、デジタル らくらくトーチを使用する場合は「2」、デジタルらくらくフィーダを使用する場合は「3」に設定する必要があります。 ※ デジタルパネルは、「2」、「3」でも使用できます。 本機能は、内部機能 F4(自動 / 半自動モード)を「0」(半自動モード)、「1」(自動機 1 モード)、「2」(自動機 2 モード)のいずれかを選択している場合に設定できます。

6.7.2.48 F80: CAN 通信の通信速度切替

CAN 通信に使用する通信速度を設定します。

デジタルリモコン(E-2442)、デジタルパネル(E-2628)、デジタルらくらくトーチ、およびデジタルらくらくフィーダを使用する場合は「0」に設定する必要があります。

本機能は、内部機能 F4(自動 / 半自動モード)を「0」(半自動モード)、「1」(自動機 1 モード)、「2」(自動機 2 モード)のいずれかを選択している場合に設定できます。

設定値	CAN 通信速度
0	500kbps
1	1Mbps
2	125kbps
3	250kbps

6.7.2.49 F83:スタート直後アーク長調整

溶接スタート直後のアーク長を調整します。

溶接スタート直後のアーク長調整は、設定された溶接条件に基づき、適切な値に自動設定されます。溶接スタート時に 適切なワイヤの燃え上がりが得られない場合は、スタート直後アーク長調整を行ってください。

ワイヤの燃え上がりを大きくする場合は、スタート直後アーク長調整を大きくします。 ワイヤの燃え上がりを小さくする場合は、スタート直後アーク長調整を小さくします。

スタート直後のアーク長調整を-20~10の範囲で設定してください。

6.7.2.50 F86/F87:電流表示調整(ゲイン/オフセット)

タッチパネルの電流表示値とお客様の計器の電流値に相違がある場合は、本機能を使用することで、電流表示値を調整できます。

- 内部機能 F86 にはゲイン、F87 にはオフセットを設定します。
 設定値を変更しても表示が修正されるのみで、出力される溶接電流は変化しません。
- 詳しい調整方法は、販売店もしくは弊社営業センターまでお問い合わせください。

/注 記 本機能の設定は、不用意に変更しないでください。

6.7.2.51 F88/F89:電圧表示調整(ゲイン/オフセット)

タッチパネルの電圧表示値とお客様の計器の電圧値に相違がある場合は、本機能を使用することで、電圧表示値を調整できます。

- 内部機能 F88 にはゲイン、F89 にはオフセットを設定します。
 設定値を変更しても表示が修正されるのみで、出力される溶接電圧は変化しません。
- 詳しい調整方法は、販売店もしくは弊社営業センターまでお問い合わせください。

注 記 本機能の設定は、不用意に変更しないでください。

第6章

6.8 アナログリモコン(別売品)の操作

本項では、アナログリモコン(別売品)に配置されているツマミやボタンの機能、および操作について説明します。 アナログリモコンの接続時は、アナログリモコン側の設定が優先されるため、溶接電源の操作パネル側で本条件を設定 することはできません。(初期条件、およびクレータ条件は、操作パネル側で設定できます。)

番号	名称	機能
1	溶接電流調整ツマミ	 溶接電流を設定します。設定値は、溶接電源側のタッチパネルに表示されます。 溶接ガイド使用時: 溶接ガイドで設定された溶接電流に対して微調整できます。 溶接電流調整ツマミを中央位置に合わせ、この位置を基準に電流低め / 高めを調整してください。
2	溶接電圧調整ツマミ	 溶接電圧を設定します。設定値は、溶接電源側のタッチパネルに表示されます。 一元モード時: 溶接電流に応じた最適な溶接電圧が自動設定され、設定された溶接電圧に対して微調整できます。 溶接電圧調整ツマミを中央位置(●位置)に合わせ、この位置を基準に電圧低め/高めを調整してく ださい。 個別モード時: 溶接電流に影響されず、溶接電圧を単独で調整できます。
3	インチングボタン	ワイヤを送給します。 🖅 5.3 ワイヤのインチング) ボタンを押している間、ワイヤが送給されます。 インチングボタンを押しながら、電流設定ツマミを操作すると、ワイヤ送給速度を調整できます。
4	目盛板(※1)	設定したアナログリモコンの目盛(☞ 6.7.2.7 F9:アナログリモコン目盛)に合わせて目盛板を取り替え ます。溶接電源の定格出力電流によって、使用できるアナログリモコンの目盛および目盛板は異なりま す。(上の図は 350A の場合) ・ 350A:350/200 ・ 500A:500/350/200
5	切替ツマミ (※2)	内部機能 F2 にて選択した機能を使用します。(🖓 6.7.2.1 F2:リモコンによる機能切替)
6	固定用ネジ	目盛板を交換する場合に、固定用ネジを反時計回りに回して取り外します。

※1:細径ワイヤを使用する場合など、低電流域での調整時は、付属のフルスケール 200A の目盛板を使用することで細かい調整ができます。200A の目盛板を使用する場合は、内部機能(F9)を「200」に設定してください。(☞ 6.7.2.7 F9:アナログリモコン目盛)

/参 考

- アナログリモコンを溶接電源に接続する場合、または取り外す場合は、溶接電源の電源スイッチ を OFF にしてください。
- アナログリモコンは、溶接電源のアナログリモコンコンセントに接続後、電源スイッチを ON に すると自動的に認識されます。

※2:切替ツマミ(5)に割り当てることができる機能は、次表のとおりです。

ロの設定	操能 名 称	リモコンの切替ツマミ		
12 UNDE	「茂市ビイコヤ小	[1]	[2]	[3]
0	機能無し	—		—
1	クレータ切替(③ 6.6.4 クレータの設定)	クレータ無	クレータ有	クレータ有 (反復)
2	ガスチェック(🖙 5.2 電源投入とガス供給)	OFF	OFF	ON
3	溶込制御(🞯 6.6.8 溶込制御の調整)	OFF	OFF	ON
4	タックスタート(🖙 6.7.2.37 F54:タックスタート処理)	OFF	OFF	ON
5	溶接条件読出し(🐨 6.7.2.29 F44:リモコンによる溶接条 件読み出し)	OFF	OFF	ON
6	溶接法切替(🖾 6.6.2 溶接モードの設定)	直流低スパッタ	直流	直流

第7章 管理者機能

本章では、溶接条件の保護機能や初期化など、管理者を対象とした機能について説明します。

7.1 溶接条件の保護

本項では、溶接条件の保護機能(パスワード機能)について説明します。本機能を有効にすると、誤操作防止機能 (☞ 5.4.2 操作パネルの誤操作防止)を解除する際に、パスワードの入力が必要となります。

/注 記

- 設定したパスワードは紙などに記録し、大切に保管してください。
- ・ パスワードを変更する際も、現行のパスワードを入力する必要があります。
- パスワードを設定して誤操作防止機能を有効にした場合、電源の再投入や溶接条件と内部機能の 初期化を行っても、誤操作防止機能は無効になりません。
- ・ パスワードを忘れた場合は、販売店もしくは弊社営業センターまでご連絡ください。

7.1.1 パスワードの設定 / 変更

本項では、パスワードの設定方法、および変更方法について説明します。

- パスワードの設定中は、溶接作業ができません。
- パスワードは、「000」(初期値)以外の数字3桁を設定してください。「000」を設定すると、パスワードは設定されません。(パスワードなし状態)

 パスワードを設定する際は、事前に決めたパスワードを紙などに記録し、手元に置いて作業して ください。

- 1. 電源スイッチを OFF にします。
- 2.「インチング」キーと「ガスチェック」キーを同時に押した状態で、電源スイッチを ON にします。 ⇒ タッチパネルに「特殊起動」画面が表示されます。

特殊起動	
1.通常起動	
2.検査モード	
3.100Vモード	
4.初期化	
5.JOBメモリの削除	▼

- 3.「パスワード設定」を選択します。
 - パスワードが登録されていない場合は、タッチパネルにパスワード設定画面が表示されます。

● パスワードが既に設定されている場合は、タッチパネルにパスワード入力画面が表示されます。 パスワードを変更する場合は、現在設定中のパスワードを入力してください。

- 4. 設定する3桁のパスワードを入力します。
- 5. パスワードに誤りがないことを確認し、「OK」を選択します。
 - ⇒ パスワードが設定されます。

パスワードの設定後、メニュー画面にてキーロックを ON にすると、ホーム画面に鍵マークが表 示され、誤操作防止機能が有効になります。誤操作防止機能を無効にするには、パスワードの入 力が必要になります。

第7章 管理者機能

7.2 溶接管理機能

本項では、溶接管理機能について説明します。本機能により、次の管理を行うことができます。

溶接管理項目	初期値	設定範囲	内容
	0	_	溶接回数の積算(回)
溶接回数管理	0	0 ~ 9999	溶接回数の目標値設定(回)
	×	√ /×	溶接回数の目標値到達時の動作設定
	00.0	—	溶接で使用した総ワイヤ消費量の積算(kg)
総ワイヤ消費量管理	0	0 ~ 9999	総ワイヤ消費量の目標値設定(kg)
	×	√ /×	総ワイヤ消費量の目標値到達時の動作設定
	00:00	—	総溶接時間の積算(時間)
総溶接時間管理	00:00	00:00 ~ 166:39	総溶接時間の目標値設定(時間)
	×	√ /×	総溶接時間の目標値到達時の動作設定
総稼働時間管理	00:00	—	総稼働時間の積算(時間)
	0	—	平均値モニタ最大変動値の設定(電流 / 電圧)
	0	0~100	プラス側電流許容誤差の設定(%)
漆 按 卧 相	0	0~100	マイナス側電流許容誤差の設定(%)
冶按鱼悦	0	0~100	プラス側電圧許容誤差の設定(%)
	0	0~100	マイナス側電圧許容誤差の設定(%)
	0	0~100	異常判定時間の設定(秒)

管理内容の詳細(③ 7.2.2 溶接管理項目の詳細)

7.2.1 溶接管理機能の設定

本項では、溶接管理機能の設定方法について説明します。

(手順)

1. メニュー > 溶接管理

2. 設定対象の管理項目を選択します。

- 各項目の右上のアイコンを選択してください。
- ⇒ 設定画面が表示されます。

- 3. 目標値の設定を変更します。
- ■「溶接回数」と「総ワイヤ消費量」の場合
 - 目標値を設定してください。設定範囲は 0 ~ 9999 です。
 - 「✓」あるいは「×」を選択し、目標値到達時の動作を設定してください。

メニュー > 溶接管理 > 溶接回数		
溶接回数の目標値設定	250	
目標到達時に値をクリア	✓	
目標到達時に溶接停止	×	
電源投入時に値をクリア	✓	
		€

メニュー > 溶接管理 > 総ワイヤ消費量		
ワイヤ消費量の目標値設定	36 _{kg}	
目標到達時に値をクリア	✓	
目標到達時に溶接停止	×	
電源投入時に値をクリア	✓	
		♪ 戻る

■「総溶接時間」の場合

- 目標値を設定してください。設定範囲は 0 ~ 166 時間 39 分です。
- 「✓」あるいは「×」を選択し、目標値到達時の動作を設定してください。

メニュー > 溶接管理 > 総溶接時間		
総溶接時間の目標値設定	8:20	
目標到達時に値をクリア	✓	
目標到達時に溶接停止	×	
電源投入時に値をクリア	✓	
		う 戻る

第7章 管理者機

管理者機能 溶接管理機能

- ■「溶接監視」の場合
 - プラス / マイナス側の電流 / 電圧の許容誤差の値を設定してください。設定範囲は 0% ~ 100% です。
 - 異常判定時時間の値を設定してください。設定範囲は0秒~100秒です。

メニュー > 溶接管理 > 溶接監視		
設定値に対する電流の上限を設定	100 %	
設定値に対する電流の下限を設定	100 %	
設定値に対する電圧の上限を設定	100 %	
設定値に対する電圧の下限を設定	100 %	
溶接監視の異常判定時間の設定	7 sec	
目標値到達時の動作設定	0	こ戻る

4.「戻る」を選択し、前の画面へ戻ります。

⇒ 設定した目標値に到達時、または溶接条件異常検出時には、タッチパネルにアラーム表示されます。 (☞ 7.2.2 溶接管理項目の詳細)

7.2.2 溶接管理項目の詳細

本項では、溶接管理項目の詳細について説明します。

7.2.2.1 溶接回数管理

溶接回数に関する管理を行います。

■溶接回数の積算

トーチスイッチ ON により、電流が流れ始めてからトーチスイッチ OFF で出力停止するまでを1カウント(溶接回数1回)として積算します。

データ値の表示範囲は0~9999回で、目標値到達時の動作の設定に応じてデータ値がクリアされます。("目標到達時に溶接停止"を無効にしている場合は、9999を超えるとクリアされ、0からのカウントに戻ります。)

■溶接回数の目標値設定

溶接回数の目標値を0~9999回の範囲で設定してください。積算された溶接回数のデータ値がここで設定した溶接回数に到達すると、目標値到達時のアラーム表示されます。(☞ 7.2.2.6 目標値到達時のアラーム表示について)

■溶接回数の目標値到達時の動作設定

溶接回数の目標値到達時の動作を「✓/×」マークで設定してください。 設定できる動作内容は次の通りです。

動作内容	有効	無効
目標到達時に値をクリア(※ 1)	\checkmark	×
目標到達時に溶接停止(※2)	\checkmark	×
電源投入時に値をクリア	\checkmark	×

※1:アラーム表示されているときに、タッチパネル上をタッチすることでも、データ値がクリアされます。 ※2:「√」に設定した場合、目標値到達時はタッチパネル上をタッチするまで、次の溶接ができません。

7.2.2.2 総ワイヤ消費量管理

総ワイヤ消費量に関する管理を行います。

■溶接で使用したワイヤ量の積算

溶接で使用した総ワイヤ消費量(kg)を計測し、カウントします。

データ値の表示範囲は0~9999kgで、目標値到達時の動作の設定に応じてデータ値がクリアされます。 ("目標到達時に溶接停止"を無効にしている場合は、9999を超えるとクリアされ、0からのカウントに戻ります。)

/参 考

総ワイヤ消費量管理機能は、総ワイヤ消費量の目安としてご利用ください。総ワイヤ消費量はワイヤのスリップ等により、実際の総ワイヤ消費量と誤差が発生する場合があります。
 下表は、ワイヤ材質の比重(g/cm³)から導き出したワイヤ単位量(g/m)を示しています。総ワイヤ消費量は、この単位量と溶接中のワイヤ送り量に基づき計算されます。従って、ワイヤ成分の相違などで、実際の消費量と計算値では誤差が生じます。

- ・ 総ワイヤ消費量が 100kg 未満の場合、小数点以下の値も表示します。
- インチングやワイヤスローダウンで使用した総ワイヤ消費量は、計測されません。
- 単位量(g/m) フェライ ワイヤ径 軟鋼フ ステンレス 軟鋼 ブレージ ステンレス ト系ステ ブレージ 軟質 硬質 (mm)ラックス フラックス インコネル チタン ソリッド ソリッド ンレスソ ング CuSi ング CuAl アルミ アルミ コアード コアード リッド 0.6 2.2 0.8 3.9 4.0 3.9 _ _ _ _ _ _ _ 0.9 5.0 5.1 4.9 4.2 _ _ 1.0 6.2 6.2 6.3 6.0 2.1 _ 8.9 7.4 9.0 7.4 3.0 1.2 8.7 3.0 1.4 12.1 10.1 1.6 15.8 13.2 15.9 13.2 5.4 5.4
- 下表に記載されていない特殊ワイヤは、計測されません。

■総ワイヤ消費量の目標値設定

総ワイヤ消費量の目標値を0~9999kgの範囲で設定してください。

積算された総ワイヤ消費量のデータ値がここで設定した消費量に到達すると、目標値到達時のアラーム表示されます。

■総ワイヤ消費量の目標値到達時の動作設定

総ワイヤ消費量の目標値到達時の動作を「✓/×」マークで設定してください。

マークと目標値到達時の動作の関係は、溶接回数の目標値設定の機能と同一です。「溶接回数の目標値到達時の動作設 定」 (③ 7.2.2.1 溶接回数管理) をご覧ください。

7.2.2.3 総溶接時間管理

総溶接時間に関する管理を行います。

■総溶接時間の積算

トーチスイッチ ON により、電流が流れ始めてからトーチスイッチ OFF で出力停止するまでの時間を毎回カウントし、 溶接時間として積算します。 データ値の表示範囲は 0 ~ 166 時間 39 分で、目標値到達時の動作の設定に応じてデータ値がクリアされます。("目標

到達時に溶接停止 "を無効にしている場合は、166時間 39分を超えるとクリアされ、0からのカウントに戻ります。)

■総溶接時間の目標値設定

総溶接時間の目標値を0~166時間39分の範囲で設定してください。 積算された溶接時間のデータ値がここで設定した時間に到達すると、目標値到達時のアラーム表示されます。 (☞ 7.2.2.6 目標値到達時のアラーム表示について)

■総溶接時間の目標値到達時の動作設定

総溶接時間の目標値到達時の動作を「↓/×」マークで設定してください。

「✓/×」マークと目標値到達時の動作の関係は、「溶接回数の目標値設定」の機能と同一です。「溶接回数の目標値到達時の動作設定」(☞ 7.2.2.1 溶接回数管理)をご覧ください。

管理者機能 溶接管理機能

7.2.2.4 溶接監視

溶接中の平均電流 / 電圧に関する監視を行います。ここで設定した範囲を超えると、アラーム表示して出力を停止させることができます。

■平均値モニタ最大変動値の設定

溶接中の平均電流 / 電圧(1秒ごとの平均)が「プラス側電流」、「マイナス側電流」、「プラス側電圧」、「マイナス側電 圧」で設定した許容誤差範囲外になると、次の内容でアラーム表示されます。(③ 7.2.2.7 溶接条件異常検出時のアラー ム表示について)

電流が範囲外の場合 電圧が範囲外の場合 電流と電圧が共に範囲外の場合 :溶接電流の設定値と平均値の電流差(A)
 :溶接電圧の設定値と平均値の電圧差(V)
 :超え幅の大きい方の差

■プラス側電流許容誤差の設定

■マイナス側電流許容誤差の設定

■プラス側電圧許容誤差の設定

■マイナス側電圧許容誤差の設定

溶接電流/電圧の設定値に対し、許容誤差範囲を0~100%の範囲で設定してください。

例:溶接電流の設定値が 200A、溶接電圧の設定値が 20V 時における各項目の設定例

プラス側電流許容誤差を「10」%に設定(=220A) マイナス側電流許容誤差を「20」%に設定(=160A) プラス側電圧許容誤差を「20」%に設定(=24V) マイナス側電圧許容誤差を「10」%に設定(=18V)

上記のように設定した場合、溶接電流の許容誤差範囲は 160 ~ 220A、溶接電圧の許容誤差範囲は 18 ~ 24V になります。

■異常判定時間の設定

溶接中の平均電流 / 電圧(1秒ごとの平均)が許容誤差範囲外となったとき、異常と判定する時間を 0 ~ 100 秒の範囲 で設定してください。

許容誤差範囲外がここで設定した時間を連続して超えた場合は、アラーム表示されます。 (③ 7.2.2.7 溶接条件異常検出 時のアラーム表示について)

「0」を設定した場合は、異常検出を行いません。

7.2.2.5 総稼働時間管理

総稼働時間に関する管理を行います。

■総稼働時間の積算 溶接電源の稼働時間を常時カウントし、総稼働時間として積算します。データの表示範囲は0~9999時間です。

7.2.2.6 目標値到達時のアラーム表示について

溶接回数、総ワイヤ消費量、または総溶接時間のいずれかが設定されている目標値に達すると、そのお知らせがタッチ パネルに表示されます。

- タッチパネル上をタッチ、または任意のキーを選択すると通常表示に戻ります。
- 目標値到達時の動作に継続動作可能を設定している場合は、タッチパネルをタッチ、またが任意のキーを選択する まで、毎回の溶接終了時にアラーム表示されます。

< 例 > 溶接回数が目標値に達した場合

7.2.2.7 溶接条件異常検出時のアラーム表示について

溶接中の平均電流、または平均電圧が設定されている範囲を超えると、そのお知らせがタッチパネルに表示されます。

- タッチパネル上をタッチ、または任意のキーを選択すると通常表示に戻ります。
- < 例 > 溶接電流または電圧が設定されている範囲を超えた場合

7.3 データのバックアップ(データの活用)

本項では、溶接条件などのデータバックアップ、およびバックアップデータの読み込みなどについて説明します。 次の内容を csv ファイルとして USB メモリにバックアップしたり、バックアップデータを溶接電源に読み込むことがで きます。

データ	バックアップ	読み込み
全データ	可能	不可
溶接条件	可能	可能
内部機能設定	可能	可能
簡易データログ	可能	不可
異常ログ	可能	不可
溶接管理機能	可能	不可

バックアップデータを利用し、次のことができます。

- 他の溶接電源に同一内容で設定コピー
- 不具合発生時の出力波形解析
- 異常履歴の管理

▲注 意

 バックアップデータ(電子情報)は、静電気や衝撃、または修理などの理由で、記憶 内容が変化したり消失する恐れがあります。重要な情報は、必ず紙に控えてください。 電子情報の変化や消失について、弊社は一切の責任を負いかねますのであらかじめご 了承ください。

/参 考

- USB メモリは、バージョン「1.0」、「1.1」もしくは「2.0」で、下位互換対応のものをご使用く ださい。
- USB メモリは、FAT32 でフォーマットされたものをご使用ください。
- 次の USB メモリは、動作を確認済みです。
 品番:SFU22048E3BP2TO-I-MS-121-STD(swissbit)(部品番号:100-1820)

波形表示 / 溶接条件編集が簡易的に行えるソフトウェアを弊社のホームページからダウン ロードできます。

https://www.daihen.co.jp/products/welder/software/index.html

7.3.1 溶接条件 / 内部機能(ファンクション)設定について

次の内容をファイル「DAIHEN_OTC_WELDING_PRAMETER.CSV」に記録することができます。

- メモリ登録されている全ての溶接条件のデータ
- データのバックアップ時に設定されている各内部機能(ファンクション)の値

操作パネルで設定されている現在の溶接条件は、保存されません。(保存が必要な場合は、あらかじめ溶接条件のメモリ登録を行ってください。)

溶接条件のメモリ登録データは、縦軸に条件番号(登録番号)、横軸に各パラメータの値が出力されます。

管理者機能 データのバックアップ(データの活用)

第7章

							41
	A		D	E	F	G	4)
	1 WELDING:					en no o concerte en	
条件番号 1」の	2 job_num spot	_tim _prf_tim	pre_iset	pre_vset	pre_uni_vse	wld_iset w	녁
パラメータ	3 1	30 1	100	185	0	150	//
	4 未 2	30 1	100	185	0	200	/
	5 番 -253	30 1	100	185	0	150/	
	5 号 -252	30 1	100	185	0	150	
	7 -251	30 1	100	.185	0	150	
		使用していない条	:件番号は、	マイナスが	表示されます	≠。	۱.
表示項目	内容	表示形式	表示項	目	内	容	表示形式
job_num	条件番号	1-100	reserv	e	予備	3	-
spot_tim	アークスポット時間	0.1(s)	reserv	e	予備	1	-
prf_tim	プリフロー時間	0.1(s)	reserv	e	予備	3	_
pre_iset	初期電流	1(A)	ant_tim_	_adj ア	ンチスティッ	ク時間調整	0.01(s)
pre_vset	初期電圧	0.1(V)	ant_vset	_adj 7	ンチスティッ	ク電圧調整	0.1(V)
pre_uni_vset	初期電圧(一元)	0.1(±)	sldwn_	adj	スローダウ	ン調整	0.1(m/min)
wld_iset	溶接電流	1(A)	up_slp_	tim	アップスロ-	-プ時間	0.1(s)
wld_vset	溶接電圧	0.1(V)	dwn_slp	_tim	ダウンスロ-	- プ時間	0.1(s)
wld_uni_vset	溶接電圧(一元)	0.1(±)	pre_ti	n	初期時	間	0.1(s)
cre_iset	クレータ電流	1(A)	cre_ti	n	クレータ	時間	0.1(s)
cre_vset	クレータ電圧	0.1(V)	KubireAut	toAdj	くびれ自動	動補正	0/1(OFF/ON)
cre_uni_vset	クレータ電圧(一元)	0.1(±)	KubireAut	oSave	くびれん	呆存	-
aff_tim	アフタフロー時間	0.1(s)	KubireF	21P	スパッタ調]整 P1P	1(土)
arc_char	アーク特性	1(土)	KubireF	2P	スパッタ調	N整 P2P	1(土)
arc_char2	アーク特性(予備)	—	Perlse	t	電流値の変	更設定	0/1(OFF/ON)
pre_sens_slp	くびれ検出感度(予備)	—	Prelset	Per f	電流値の設定	(初期条件)	1(%)
pre_sens_cnst	-	—	Crelset	Per 電流	値の設定(ク	7レータ条件)	1(%)
reserve	予備	—	TsCrickl	set	トーチスイッ	チ電流調整	0/1(OFF/ON)
reserve	予備	-	CrilsetSt	ep1 🗦	シングルクリ	ック増減量	1(A)
reserve	予備	-	CrilsetSt	ep2	ダブルクリッ	ク増減量	1(A)
pre_feed	初期送給速度	0.1(m/min)	reserv	e	予備		—
wld_feed	溶接送給速度	0.1(m/min)	Interv	al	インターバル	溶接機能	0/1(OFF/ON)
cre_feed	クレータ送給速度	0.1(m/min)	Interval_	ON	インターバル アーク ON	∙溶接機能 N 時間	0.01(s)
reserve	予備	-	Interval_	OFF	インターバル アーク OF	·溶接機能 F 時間	0.01(s)
reserve	予備	_	exp_c	trl	拡張コントロ	ール情報	_
ctrl	シーケンス情報	(※1)	dummy1	~ 10	予備		_
wmode_H	プロセス情報 1	(**2)	chksu	n	チェック	サム	チェックサム データ
wmode I	プロセス情報 2	(**2)	_		_		_

※1:クレータシーケンスなどの情報が記録されています。

※2:ワイヤ径、材質、およびシールドガスなどのプロセスに関する情報が記録されています。

内部機能(ファンクション)の設定データは、条件番号(登録番号)の配下に出力されます。

101	-157	30	1	100	185	0	150
102	-156	30	1	100	185	0	150
103	FUNCTION	l:					
104	F1	F2	F3	F4	F5	F6	F7 F8/
105	0	0	2	0	2	0	o //
106							
ファンクションの設定データ							

/参 考

溶接条件のメモリ登録データと内部機能(ファンクション)の設定データは、個別に保存することができません。必ず所定の csv ファイルに両方のデータが書き込まれます。

管理者機能 データのバックアップ (データの活用)

1.1

簡易データログ機能について 7.3.2

溶接中の各データをサンプリングし、USBメモリにバックアップさせると、パソコン上で溶接状態を確認することがで きます。サンプリングできるデータは、次の中から3種類のみです。

溶接電圧設定値 溶接雷流設定値 ワイヤ送給速度設定値 溶接電流実測値

ワイヤ送給速度実測値 溶接電圧実測値 •

上記に加え、csv ファイルの E列に「熱量」が表示されます。

データの種類 / サンプリング間隔は、内部機能 F52/F53(データログ機能)で設定してください。 (③ 6.7 内部機能の設定)

簡易データログは、「DAIHEN OTC Welbee\DAT\DAT00001」フォルダの配下に作成され、1 回の溶接ごとに csv ファ イルが生成されます。

既に「DAIHEN_OTC_Welbee\DAT\DAT00001」フォルダがある場合は、「DAIHEN_OTC_Welbee\DAT」フォルダの配下 に「DAT00002」フォルダが作成され、簡易データログを生成するごとに次の番号のフォルダが作成されます。

例:内部機能 F52 を「1」(溶接電流、溶接電圧、送給速度の検出値)、F53 を「2」(100ms)に設定した場合は、次の ように出力されます。

1 時間[msec] 電流実測値[A] 電圧実測値[V] 送給実測値[m/min] 2 0 42 53.8 1.5 3 100 97 25.3 2.1 4 200 139 12.3 2.1 5 300 146 11.7 2.1 6 6 400 132 13.1 2.1 7 6 400 132 13.1 2.1 8 44 600 106 15.6 2.1 8 44 600 107 16.5 2.1 9 4 700 113 16.5 2.1 900 125 14.2 2.1 10 11 900 125 14.2 2.1 12 7 100 115 15.3 2.1	
溶接開始 2 0 42 53.8 1.5 3 100 97 25.3 2.1 4 200 139 12.3 2.1 5 300 146 11.7 2.1 6 6 400 132 13.1 2.1 7 6 600 107 16.5 2.1 8 600 107 16.5 2.1 9 11 700 113 16.5 2.1 900 125 14.2 2.1 10 112 7 1000 115 15.3	
3 100 97 25.3 2.1 4 200 139 12.3 2.1 5 300 146 11.7 2.1 6 400 132 13.1 2.1 7 11 500 106 15.6 2.1 8 40 132 13.1 2.1 9 100 107 16.5 2.1 10 800 117 14.9 2.1 900 125 14.2 2.1 12 7 100 115 15.3 2.1	
4 200 139 12.3 2.1 5 300 146 11.7 2.1 6 H 400 132 13.1 2.1 7 H 500 106 15.6 2.1 8 H 600 107 16.5 2.1 9 H 800 117 14.9 2.1 10 900 125 14.2 2.1 12 7 1000 115 15.3 2.1	
5 300 146 11.7 2.1 6 H 400 132 13.1 2.1 7 H 500 106 15.6 2.1 8 H 600 107 16.5 2.1 9 H 800 117 14.9 2.1 10 900 125 14.2 2.1 11 7 1000 115 15.3 2.1	
6 時 400 132 13.1 2.1 7 間 500 106 15.6 2.1 8 経 600 107 16.5 2.1 9 過 700 113 16.5 2.1 10 800 117 14.9 2.1 900 125 14.2 2.1 12 7 1000 115 15.3 2.1	
7 間 500 106 15.6 2.1 8 経 600 107 16.5 2.1 9 過 700 113 16.5 2.1 10 800 117 14.9 2.1 11 900 125 14.2 2.1 12 7 1000 115 15.3 2.1	
8 経 過 600 107 16.5 2.1 9 過 700 113 16.5 2.1 10 800 117 14.9 2.1 11 900 125 14.2 2.1 12 7 1000 115 15.3 2.1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
10 800 117 14.9 2.1 11 900 125 14.2 2.1 12 7 1000 115 15.3 2.1	
11 900 125 14.2 2.1 12 7 1000 115 15.3 2.1	
$12 \overline{7} 7 1000 115 15.3 2.1$	
13 / 1100 125 14.6 2.1	
14 1200 155 12.3 2.1	
141	

/参 老

クアップしてください。

記憶できる時間は、サンプリング間隔に関係します。サンプリング間隔を 100ms にした場合、 約5時間のデータを記録できます。この容量を超えたデータは、古いものから消去されます。ま た、データの記録は溶接中のみで、出力を行っていないときは記録されません。

簡易データログを保存するためのバックアップ機能はありませんので、電源スイッチを OFF に すると、簡易データログは消去されます。 ただし、異常コードがタッチパネルに表示されている(異常コード出力中)場合でも、簡易デー タログを取り出すことはできます。その際は、電源スイッチを OFF にする前に、データをバッ

7.3.3 異常ログ機能について

過去10件の異常コードを記録することができます。(異常発生時の日時は、記録されません。)

異常ログのデータは、ファイル「DAIHEN_OTC_WELDING_ABN.CSV」に記録されます。表の左側が一番新しい異常ロ グの記録となり、右側へ進むごとに過去のものとなります。

7.3.4 溶接管理機能について

次の内容をファイル「DAIHEN_WELDING_MONITOR_DATA_MACHINE_***.CSV」に記録することができます。

- 溶接機識別番号
- 溶接管理機能の積算値

ファイル名末尾の「***」には、内部機能 F77(溶接機識別番号)の設定値が付与されます。 (3 6.7.2.45 F77:溶接機 識別番号)

	A	В	С
1	溶接機識別番号	1	
2	溶接点数	22	
3	ワイヤ消費量	0.22	kg
4	総溶接時間	6	分
5	電流許容誤差	-62	A
6	電圧許容誤差	5	V
7			

7.3.5 バックアップ操作

本項では、溶接条件などのデータをバックアップする方法について説明します。 データは、USBメモリにバックアップできます。

/参 考

USB メモリは、FAT32 でフォーマットされているものを使用してください。FAT16、または NTFS でフォーマットされている場合は、FAT32 で再フォーマットしてください。

(手順)

- 1. 電源スイッチを ON にします。
- 2. USB メモリを溶接電源の USB コネクタに差し込みます。
- **3**. メニュー > バックアップ / リストア > バックアップ
- 4. バックアップするデータを選択します。

- 5.「バックアップ開始」を選択します。
 - ⇒ データのバックアップが始まります。
 - ・ データのバックアップが完了すると、前の画面へ戻ります。

7.3.6 バックアップデータの読み込み操作

本項では、バックアップしたデータを読み込む方法について説明します。

 <u>「注 記</u>

 ※接電源に記憶されているデータは、バックアップデータの内容に上書きされます。上書きして もよいことを確認してください。

(手順)

- 1. 電源スイッチを ON にします。
- 2. USB メモリを溶接電源の USB コネクタに差し込みます。
- **3**. メニュー > バックアップ / リストア > リストア
- 4. 読み込むデータを選択します。

メニュー 🔉 バックアップ / リストア		
לאבע 💭 🔿 🏷	全てのデータ	
	JOBメモリ	
	内部機能	
リストア開始		●戻る

- 5.「リストア開始」を選択します。
 - ⇒ データの読み込みが始まります。
 - ・ データの読み込みが完了すると、前の画面へ戻ります。

第7章 管理者機能

7.4 溶接条件と内部機能の初期化

本項では、溶接条件や内部機能の初期化の方法について説明します。 初期化を行うと、現在使用している溶接条件や内部機能の値が出荷時の値(初期値)に戻ります。ただし、メモリ登録 されている溶接条件には影響を与えません。

/注 記 F39~42 は初期化されません。

(手順)

- 1. 電源スイッチを OFF にします。
- 2.「インチング」キーと「ガスチェック」キーを同時に押した状態で、電源スイッチを ON にします。 ⇒ タッチパネルに「特殊起動」画面が表示されます。

特殊起動	
1.通常起動	
2.検査モード	
3.100Vモード	
4.初期化	
5.JOBメモリの削除	▼

- 3.「初期化」を選択します。
- 4.「OK」を選択します。

⇒ データの初期化が始まります。

- 5. データの初期化が完了したことを確認し、電源スイッチを OFF にします。
 - 電源スイッチを ON にすると、通常の状態に戻ります。

管理者機能システム設定

7.5 システム設定

システム設定では、次の機能が使用できます。

- システム情報(ソフトウェアバージョンおよび製造番号)の確認
- ディスプレイの明るさの設定

7.5.1 ソフトウェアバージョンおよび製造番号の確認

本項では、溶接電源にインストールされているソフトウェアのバージョンの確認方法について説明します。 ソフトウェアのバージョンは、次のように管理されています。

ソフトウェアバージョンは、タッチパネルから以下の手順で確認することができます。

1. メニュー > システム設定 > システム情報

- ⇒ タッチパネルに製品情報が3ページ構成で表示されます。
- ・ 確認後は「戻る」を選択すると、前の画面へ戻ります。

メニュー > システム設定 > システム情報		
システム情報		
日時 マスター P30457.000.002.000.000	LCD panel software version V2.01.1	1
ガバナ 002 オブションボード 製品番号		3
1P30457**********		
メニュー > システム設定 > システム情報		
システム情報		
システム情報 ォプション		
システム 情報 オプション IFR-101S		2
システム情報 オプション IFR-101S データストレージ		2
システム 情報 オプション IFR-101S データストレージ タブレット		2 3
システム 情報 オプション IFR-101S データストレージ タブレット フィールドバス		▲ 2 3

7.5.2 ディスプレイの明るさ

管理者機能 システム設定

タッチパネルの「ディスプレイの明るさ」を設定できます。

(手順)

第7章

- 1. メニュー>システム設定>ディスプレイの明るさ
- 2. 明るさの設定値を変更します。
 - ⇒ 数値が大きくなるにつれ、明るさが上がります。
 - ⇒ 選択した数値には、チェックマークが表示されます。
 - ・ 設定が完了したら、「戻る」を選択し前の画面へ戻ります。

メニュー > システム設定	
ディスプレイの明るさ	1
	2
	3
	4
	5
	● 戻る

管理者機能 校正モード

7.6 校正モード

校正モードを用いて溶接電源のタッチパネルに表示される電流 / 電圧表示値と実際の出力電流 / 電圧値の校正を実施することができます。

7.6.1 出力電流の調整方法

(手順)

- 1. 0.1Ω で、12.6kW 以上の抵抗負荷を出力に接続します。
 - 抵抗負荷がない場合は、出力端子間を 38mm² 以上のケーブルで短絡してください。短絡させるためには以下のような方法があります。
 ①圧着端子(仕様: R80-10/部品番号: 100-1298)を両方につけたケーブルを溶接電源に接続する。
 ②送給装置接続用のトーチ側ケーブルと母材側ケーブルを直接ボルトナットで締める。
- 2. 外付けの電流計やシャント抵抗などの出力電流が測定できる計器を接続します。
- 3. 電源スイッチを OFF にします。
- **4.**「インチング」キーと「ガスチェック」キーを同時に押した状態で、電源スイッチを ON にします。 ⇒ タッチパネルに「特殊起動」画面が表示されます。

特殊起動	
11. プログラムのバックアップ	
12. プログラムの復元	
13. 校正モード	
	↓ ●
	▼

- 5.「校正モード」を選択します。
- 6. 電流設定を 350A に設定します。
- 7. トーチスイッチを ON にして出力電流を測定します。
 - 出力電流が測定できたら、トーチスイッチをいったん OFF にしてください。
- 8. 設定値に対する出力誤差を、内部機能の F39 と F40 の値で補正します。
 - F39 の値は『1』で出力電流 1A に相当し、+側に数字を大きくすることで出力電流が増加します。細かい調整 が必要な場合は F40 の値を変更してください。F40 は『0.01』で出力電流 0.01A に相当します。
- 9. 出力電流を調整したら、次にトーチスイッチを ON にし、設定 に対する調整結果を確認します。
 - 出力電流の値が 350±1A の範囲内であることを確認してください。
 - 出力電流の値が上記の範囲外の場合、F39、F40の値を再調整してください。
- 10.校正が完了したら、溶接電源の電源スイッチをいったん OFF にし、タッチパネルが完全に消灯してから、再度電源投入します。

7.6.2 出力電圧の調整方法

- 1. 0.1Ωで、12.6kW以上の抵抗負荷を出力に接続します。
 - 抵抗負荷がない場合は、出力端子間を開放としてください。
- 2. 外付けの電圧計と電圧検出線を抵抗負荷の両端(無負荷の場合は出力端子)に接続します。
- 3. 電源スイッチを OFF にします。
- **4.** 「インチング」キーと「ガスチェック」キーを同時に押した状態で、電源スイッチを ON にします。 ⇒ タッチパネルに「特殊起動」画面が表示されます。

11. プログラムのバックアップ	
12. プログラムの復元	
13. 校正モード	
	•
	▼

- 5.「校正モード」を選択します。
- 6. (抵抗負荷を接続している場合) トーチスイッチを ON にして抵抗負荷の両端電圧を測定し、電圧が 30.0±0.1V となるように出力電流を設定します。
 - ⇒ 抵抗負荷を接続せず出力端子開放とした場合、最高無負荷電圧(例:200V入力時 70V)が出力され、出力電 圧の設定を変更しても出力電圧の測定値は変わりませんので、最高無負荷電圧にて出力電圧の調整を行いま す。
- 7. トーチスイッチを ON にし、電圧計に表示される出力電圧と、タッチパネルに表示される電圧との誤差 を確認します。
- 8. 出力誤差が ±0.1V の範囲となるように、内部機能の F41 と F42 の値で補正をします。
 - F41 の値は『0.1』で出力電圧 0.1V に相当し、+側に数字を大きくすることで出力電圧が増加します。細かい 調整が必要な場合は F42 の値を変更してください。F42 は『0.01』で出力電圧 0.01V に相当します。
- 9. 出力電圧を調整したら、次にトーチスイッチを ON にし、設定に対する調整結果を確認します。
 - 測定値とタッチパネルの表示値との誤差が±0.1Vの範囲内であることを確認してください。
 - 誤差が ±0.1V の範囲外の場合、F41、F42 の値を再調整してください。
- 10.校正が完了したら、溶接電源の電源スイッチをいったん OFF にし、タッチパネルが完全に消灯してから、再度電源投入します。

第7章 管理者機能

7.7 タッチパネルの言語切替

タッチパネルの言語を切り替えることができます。

- 1. メニュー > 言語
- 2. リストから設定する言語を選択します。
 - ⇒ 選択した言語には、チェックマークが表示されます。

メニュー、	▶言語	
 	日本語	
	English	
		€

3.「戻る」で前の画面に戻り、言語が切り替えられていることを確認します。

第8章 保守点検

本章では、溶接電源の日常点検、および定期点検について説明します。

8.1 保守点検に関する注意

本項では、保守点検作業時の注意事項について説明します。 感電や火傷を防止するため、必ず次の事項をお守りください。

⑦ 危 険

- 溶接電源の入力端子、出力端子および内部の帯電部に触れないでください。
- 保守点検は定期的に実施し、損傷した部分は修理してからご使用ください。
- ・ 保守点検や修理は、有資格者または溶接機をよく理解した人が行ってください。
 (☞ 1.3 安全に関する法規について)
- 保守点検は、必ず溶接電源を接続している配電箱の開閉器により入力電源を遮断し、 3分以上が経過したあとに作業を開始してください。
 また、入力電源を遮断しても、コンデンサには充電されていることがあります。必ず 充電電圧がないことを確認し、作業を開始してください。
- 保守点検中は、入力電源が投入されないように対策してください。
 溶接電源は、高周波インバータ方式を採用しており、入力側に接続されている部品が 多いため、特に注意する必要があります。
- 定期的に湿気の少ない圧縮空気を溶接電源の各部に吹きつけ、チリやほこりを除去してください。
 内部に堆積した粉じんを放置すると、絶縁劣化を起こし、感電や火災の原因になりま

▲注 意

す。

保守点検は、溶接電源内部の温度が下がるのを待ってから行ってください。
 溶接直後は、直流リアクトルやヒートシンクなど、主回路の部品が高温になっています。

これらに不用意に触れると、火傷をする恐れがあります。

回転部への巻き込まれ / 挟まれを防止するため、必ず次の事項をお守りください。

⑦ 危 険

- 保守点検や修理などでケースを取り外す必要がある場合は、有資格者または溶接機をよく理解した人が行ってください。また、保守点検や修理作業中は、溶接機の周囲に囲いをするなどし、不用意に他の人が近づかないように対策してください。
- 回転中の冷却ファンおよび冷却ファン周囲の開口部に手、指、髪の毛、または衣類な どを近づけないでください。

保守点検

第8章

溶接電源の損傷やトラブル、およびデータの消失を防止するため、必ず次の事項をお守りください。

▲ 注 意

溶接電源に記憶されるデータ(電子情報)は、静電気や衝撃、または修理などの理由で、記憶内容が変化したり消失する恐れがあります。重要な情報は、必ず紙に控えを取ってください。
 電子情報の変化や消失について、弊社は一切の責任を負いかねますので、あらかじめ

電子情報の変化や消失について、弊社は一切の貢任を負いかねますので、あらかじめ で了承ください。

- 溶接電源の清掃時は、圧縮空気を冷却ファンに直接吹き付けないでください。
 冷却ファンの内部に粉じんが入り込む恐れがあります。また、圧縮空気により冷却 ファンが高速で回転し、軸受けが摩耗する恐れがあります。
- 溶接電源に付着した粉じんを掃除機で除去する場合は、冷却ファンの回転部分と本体の間を吸引しないでください。
 この部分を吸引すると、冷却ファンの軸受けを潤滑しているグリスも吸引される恐れ

があり、冷却ファンの故障や寿命低下の原因につながります。

8.2 日常点検

本項では、溶接電源の日常点検について説明します。下表の内容を日常的に点検してください。

溶接電源のフロントパネルやリアパネル、ファンは、ポリカーボネート樹脂で製作されています。樹脂部品の損傷に伴 う感電や火災を防止するため、必ず次の事項をお守りください。

◆ 危 険

- 日常点検を行う前に、「8.1 保守点検に関する注意」をお読みください。
- 樹脂部品が汚れた場合は、水、アルコールまたは中性洗剤を柔らかい布に浸し、よく 絞ってから拭いてください。
 有機溶剤や化学薬品は、使用しないでください。クラック(割れ)や強度低下の原因 につながります。
- フロントパネルやリアパネルなどの樹脂部品に異常が発見された場合は、直ちに使用 を中止し、販売店もしくは弊社営業センターまでご連絡ください。

日常点検項目	点検内容
アース線の状態	 溶接電源背面のアース端子が確実に接地されていることを確認してください。(接地されていない 場合は、感電 / 故障 / 誤動作の原因になります。)
各ケーブルの状態 (設備側1次電源ケーブル、 母材側/トーチ側ケーブ ル、トーチケーブル、電圧 検出ケーブルなど)	 ケーブルの接続部に異常な発熱がないことを確認してください。 ケーブルの接続部に緩みがないことを確認してください。 ケーブルに断線や損傷がないことを確認してください。
溶接電源の外観状態	 溶接電源の樹脂部品にクラックなどの異常がないことを確認してください。
溶接電源からの音 / 振動 / 臭い	 溶接電源の内部で金属音を伴う音や異常な振動、および焦げたような臭いがしていないことを確認してください。
冷却ファンの状態	 電源スイッチを ON にしたときに、冷却ファンが円滑に回転することを確認してください。(金属 音を伴う音や異常な振動、および焦げたような臭いがしていないこと) 冷却ファンが回転しているときは、溶接電源正面 / 背面のスリット(通気孔)から風が出てきます。
操作パネル / トーチスイッ チの状態	 ・操作パネル上のキー、およびトーチスイッチの動作不良がないことを確認してください。
設備側1次電源電圧の状態	• 1 次電源電圧に大きな変動がないことを確認してください。

第8章 保守点検 定期点検

8.3 定期点検

本項では、溶接電源の定期点検について説明します。下表の内容を3~6か月ごとに点検してください。

◆ 危 険

• 定期点検を行う前に、「8.1 保守点検に関する注意」および「8.2 日常点検」の注意事項 をお読みください。

▲注 意

- 溶接電源の清掃時は、圧縮空気を冷却ファンに直接吹き付けないでください。
 冷却ファンの内部に粉じんが入り込む恐れがあります。また、圧縮空気により冷却ファンが高速で回転し、軸受けが摩耗する恐れがあります。
- 製品内部の清掃時には、人体に有害な粉じんが飛散する恐れがあります。適切な作業 環境のもと、保護具を着用して作業を実施してください。

定期点検項目	点検内容
溶接電源内部部品の確認	 変色した部品や熱で変形した部品などの不具合が無いか確認ください。 不具合がある場合は、販売店もしくは弊社営業センターにご相談ください。
溶接電源内部の配線接続の 確認 	 配線の接続不良がないことを確認してください。 配線に緩みや接続不良がある場合は、正しく接続し直してください。 なお、赤色のコーティングされている部分が緩んでいる場合は、販売店もしくは弊社営業センターにご相談のうえ、補修してください。
アース線の状態	
各ケーブルの状態 (設備側1次電源ケーブル、 母材側/トーチ側ケーブ ル、トーチケーブル、電圧 検出ケーブルなど)	・ 「8.2 日常点検」の同項目を参照してください。
溶接トーチの状態	 溶接トーチの消耗部品に劣化や損傷などの異常がないことを確認してください。異常がある場合は、ワイヤが引っ掛かりながら出てくるなどの症状が現れます。
溶接電源内部の清掃	 正面のスリット(通気孔)から後方へ向かって湿気の少ない圧縮空気を吹き付け、溶接電源内部のチリやほこりを除去してください。 トランジスタや整流器のヒートシンクにチリやほこりが堆積すると、放熱が悪くなりトランジスタや整流器に悪影響を及ぼします。また、変圧器などの巻線間にチリやほこりが堆積すると、絶縁劣化の原因になります。

8.4 定期交換部品について

本項では、定期的な交換を必要とする部品について説明します。

高圧電解コンデンサC5(3710.1パーツリスト)
 高圧電解コンデンサは、安定した直流電流をインバータ回路に供給する働きがありますが、その性能は経年変化によって低下します。
 そのため、高圧電解コンデンサC5を交換しないで長期間使用すると、溶接電源の性能低下、および高圧電解コンデンサや他の部品の損傷につながります。

高圧電解コンデンサC5は、約5年ごとの交換を推奨します。

交換については、販売店もしくは弊社営業センターまでお申し付けください。

▲注 意

- お客様が交換される場合でも、販売店もしくは弊社営業センターまでご連絡ください。
- コネクタをプリント板に差し込むときは、プリント板に印刷されている番号とコネク タに表示してある番号が同じであることを確認し、最後まで確実に差し込んでください。
- プリント板のコネクタを取り外した状態で、溶接電源の電源スイッチを ON にしない でください。
- その他

ファン、リレー、定電圧電源については一定の寿命があり、約5年ごとの交換を推奨します。

ファン、リレー、定電圧電源の交換が必要な場合は、販売店もしくは弊社営業センターまでご相談ください。

第8章

保守点検

定期交換部品について

8.5 絶縁抵抗測定および耐電圧試験について

絶縁抵抗測定および耐電圧試験が必要な場合は、必ず販売店もしくは弊社営業センターまでご相談ください。

◆ 危 険

- 耐電圧試験が必要な際は、必ず販売店もしくは弊社営業センターまでご相談ください。
- 絶縁抵抗測定は、有資格者または溶接機をよく理解した人が行い、溶接機の周囲に囲いをするなどし、不用意に他の人が近づけないようにする必要があります。

▲注 意

絶縁抵抗測定を不用意に行うと、人身事故や機器の故障の原因となる恐れがあります。
 絶縁抵抗測定の実施については、販売店もしくは弊社営業センターまでご相談ください。

絶縁抵抗測定に関する注意 絶縁抵抗測定には、500Vの絶縁抵抗試験器および太さ 1.25mm² 程度の短絡線用のケーブルが必要です。また、溶 接電源の電気接続図、部品配置図およびパーツリストを参照した上で、以下の作業が必要になります。

- 配電箱の開閉器から入力電源ケーブルおよび接地ケーブルを取り外し、入力端子を短絡する。
- 出力端子の+と-を短絡する。

٠

- すべてのケース接地線(線番 80 計 5 カ所)を接地より外し、絶縁テープなどで絶縁する。
- DR1 の交流側と+出力側、交流側と-出力側をそれぞれ短絡する。
- TR1(C1)-(E1C2)、TR1(E1C2)-(E2)、TR3(C2)-(E2)、TR5(C)-(E), TR6(C)-(E)間を短絡する。 – NF を投入する。
- 絶縁抵抗測定終了後、上記を元の状態に戻す。

<u>∧ 注</u>意

絶縁抵抗測定終了後、短絡線などを外し、溶接電源を元の状態に戻す必要があります。
 元の状態に戻さずに電源を投入すると、溶接電源を焼損します。

第9章 トラブルシューティング

本章では、溶接電源の代表的なトラブルシューティングについて説明します。

トラブルが発生する要因は、次のように分類できます。

- 機械関係のトラブル(ワイヤ送給装置の駆動メカニズムなどのトラブル)
- 電気関係や制御関係のトラブル
- 操作ミス

また、これらの要因が複雑に絡み合ったトラブルに発展することも考えられます。溶接電源に何らかのトラブルが発生した場合は、トラブルの原因を把握し、適切に対処することが必要です。

トラブルに関する不明点は、販売店もしくは弊社営業センターまでお問い合わせください。

9.1 エラー発生時の対処

本項では、タッチパネル上に表示された異常の原因、および対処方法について説明します。 溶接電源に何らかの異常が発生すると、タッチパネルにエラーメッセージが表示されます。

発生する異常コードによって、溶接電源の出力が停止する場合と停止しない場合があります。下表の「異常の原因」に 表記されている(※1)と(※2)は、以下を示しています。

- ※1:異常が発生すると、溶接電源の出力は停止します。
- ※2:異常が発生しても、溶接電源の出力は停止しません。出力を停止させるには、内部機能 F19 の設定を「ON」にしてください。(③ 6.7.1 内部機能の設定方法)
 内部機能 F19 の詳細(④ 6.7.2.14 F19:警告の設定切替)

表示された異常コードを確認し、下表の内容に従い対処してください。 (溶接電源を弊社ロボットと組み合わせている場合は、ロボット制御装置の取扱説明書をご覧ください。) (溶接電源を別売品機器と組み合わせている場合は、別売品機器の取扱説明書も併せてご覧ください。)

⑦ 危 険

溶接電源を点検する前に、必ず「8.1保守点検に関する注意」をお読みください。

▲ 注 意

下表に記載されていない異常コードが表示された場合は、異常コードを紙に記録して
 から電源スイッチを OFF にし、販売店もしくは弊社営業センターまでご連絡ください。

また、溶接電源の深刻なトラブルの可能性があるため、電源スイッチを再投入しない でください。

異常:	コード	異常の原因	対処 / 異常の解除方法		
Е —	000	STOP 端子間を開放した(※1)	• 外部接続用端子台 TM4 の STOP 端子(3-4)が開放された原因を確認してください	[°]	
			• 異常コード表示の解除方法は、内部機能 F4 の設定により異なります。 (3) 6.7.2.2	2	
			F4:目動 / 半目動モード)		
Е —	010	電源スイッチを ON にするとき	• トーチスイッチが ON(押された状態)していないことを確認してください。		
		に、トーチスイッチが ON に	・ 内部機能 F29 ~ F32 の設定を「4」(起動)にしている場合は、外部接続用端子台(の	
		なつていた(※1)	接続も含めて確認してください。 🚱 6.7.2.20 F29 ~ F32:外部入力端子の設定)		
			 異常コード表示は、上記を解決すると解除されます。 		
Е —	011	トーチスイッチが ON になって	 トーチスイッチが ON(押された状態)していないことを確認してください。 		
		から5秒経っても溶接が開始し	• 内部機能 F78 を OFF にすることで本異常を発生しないようにすることができます。	0	
		なかった(※1)	不要な場合は内部機能 F78 を OFF にしてください。 🚱 6.7.2.46 F78:意図しない	,٢	
			トーチスイッチ動作の防止)		
			 異常コード表示は、上記を解決すると解除されます。 		
Е —	020	電源スイッチを ON にするとき	 「インチング」キーが押されていないことを確認してください。 		
		に、インチング状態であった	• 内部機能 F29 ~ F32 の設定を「2」(インチング)にしている場合は、外部接続用端子	子	
		(*1)	台の接続も含めて確認してください。(🞯 6.7.2.20 F29 ~ F32:外部入力端子の設定))	
			 異常コード表示は、上記を解決すると解除されます。 		
Е —	030	USB メモリからソフトウェアを	・ USB メモリ本体に異常がないこと、および USB メモリが正しく USB コネクタに差	-	
	\sim	正しくインストールできなかっ	し込まれていることを確認し、再度インストールしてください。		
	037	た(※1)	• 異常コード表示は、電源スイッチを OFF にすると解除されます。		

異常二	コード	異常の原因	対処 / 異常の解除方法
Е —	100	制御電源の異常(※1)	 溶接電源から外部に配線を引き出している場合は、それらの配線に異常(短絡など)
			がないことを確認してください。
-	450		・ 異常コード表示は、電源スイッチを OFF にすると解除されます。
Е-	150	次側の人刀電圧か計谷軛囲を 招えた (※1)	• 「次側の人刀電圧か 180 ~ 242 V の範囲内であることを確認してくたさい。
-	100		 ・ 異常コート表示は、電源人イッナを OFF にすると解除されます。 ・ 1 次側の3 古馬広杉 100 - 2421/ の符回ウスキスストナ 施設 - スイギナレン
Е —	160	次側の入力電圧か計谷軛囲よ り低下した (※2)	
			 内部機能 F20 の設定値を確認してください。(207 6.7.2.15 F20:人力電圧不足検出 レベル)
			 異常コード表示は、電源スイッチを OFF にすると解除されます。
E —	210	アーク電圧が検出できなかった (※1)	 母材側ケーブルやトーチ側ケーブルなどのパワーケーブル、および電圧検出ケーブ ルが断線していないことを確認してください。
			• 異常コード表示は、電源スイッチを OFF にすると解除されます。
Е —	300 ~ 303	溶接電源内部の温度が許容範囲 を超えた(※1)	 溶接電源内部のほこりを除去してください。(13) 8.3 定期点検) (粉人や異物などの影響で、冷却ファンが正常に動作していないことが考えられます。)
			 電源スイッチを ON にした状態で 10 分以上冷却ファンを回し、電源スイッチを OFF にしてください。
			 復帰したあとも、使用率を超えないように、使用してください。
			 改善されない場合は、冷却ファンの故障などが考えられます。販売店もしくは弊社 営業センターまでご連絡ください。
			 異常コード表示は、電源スイッチを OFF にすると解除されます。
Е —	500	水圧異常	 タッチパネルの「その他 > 水冷」が OFF に設定されていることを確認してください。
Е —	615	バックアップメモリのデータ異	 異常コード表示は、操作パネル上の任意のキーを押すと解除されます。
		常(※2)	 このとき、設定/登録されている溶接条件や内部機能の設定が初期化されることがあります。異常を解除したあとは、これらのデータに問題がないことを確認してください。
Е —	700	溶接電源の出力側で過電流を検	 溶接トーチ先端のチップと母材が接触していないことを確認してください。
		出した(※1)	 母材側ケーブルやトーチ側ケーブルなどのパワーケーブルが短絡していないことを 確認してください。
			 異常コード表示は、電源スイッチを OFF にすると解除されます。
Е —	710	1次側入力電源の W 相が接続	 1次側の入力電圧、および配線に異常がないことを確認してください。
		されていない(※1)	• 異常コード表示は、電源スイッチを OFF にすると解除されます。
Е —	800 801	ワイヤ送給モータの回転数が検 出できなかった(※1)	 ワイヤ送給装置を接続しているケーブルに断線や短絡などの異常がないことを確認してください。
			 ワイヤ送給装置本体に異常がないことを確認してください。
			 異常コード表示は、電源スイッチを OFF にすると解除されます。
Е —	810	送給モータ制御回路の温度が許 容範囲を超えた(※1)	
Е —	820	ワイヤ送給モータに流れる電流 が警告レベル、または異常検出	 溶接トーチやワイヤ送給装置内で、ワイヤの引っ掛かりなどの異常がないことを確認してください。
_	0000	レベルを超えた(※2)	 異常コード表示は、電源スイッチを OFF にすると解除されます。
E —	830	ソィヤ 法給モータに流れる電流 が警告レベル、または異常検出 レベルを超えた(※1)	・ 「E − 820」の表示は、操作パネル上の任意のキーを押すと解除されます。
Е —	951	同一バス上に同じ ID が重複し て存在した(※1)	 CAN で接続されている他の溶接電源の全ての電源スイッチを OFF にしたあとに、 電源スイッチを ON にし、内部機能 F43 の設定値を確認してください。 (3) 6.7.2.28 F43: CAN ID)
			• 異常コード表示は、電源スイッチを OFF にすると解除されます。

9.2 トラブルシューティング

本項では、異常コード表示以外の代表的なトラブル、およびその原因と対処方法について説明します。 修理を依頼される前に、下表の内容を確認してください。

⑦ 危 険

• 溶接電源を点検する前に、必ず「8.1 保守点検に関する注意」をお読みください。

No.	トラブルの現象	故障 / 異常原因	対処方法
1	電源スイッチがトリップした	溶接電源が漏電している	電源スイッチを絶対に再投入しないで、販売店もしくは 弊社営業センターまでご連絡ください。
2	電源スイッチを ON にして も、主電源表示灯が点灯しな い	1 次側の雲頂が入力されていたい	1 次側の電源を AC180 ~ 242V の範囲内で供給してくだ
3	電源スイッチを ON にして も、タッチパネルに何も表示 されない		さい。
4	電源スイッチを ON にする と、異常コードが表示される	温度異常による保護回路が機能し ている	そのまま何もしない状態(電源スイッチを ON にした状態)で 10 分以上冷却ファンを回し、電源スイッチを OFF にしてください。 その後、溶接電源内部のほこりを除去してください。 (「3 8.3 定期点検)
		ガスボンベのバルブが閉じている	ガスバルブを開いてください。
		ガスボンベの圧力が不足している	ガスボンベを交換してください。
5	シールドガスが放流されない	外部入力の設定 / 処置が間違って いる	内部機能 F29 ~ F32 の設定が正しいことを確認してくだ さい。(☞ 6.7.2.20 F29 ~ F32:外部入力端子の設定)
		外部入力の配線が断線 / 短絡して いる	外部入力端子台に接続している配線に異常がないことを 確認してください。 異常がある場合は、この配線を補修 / 交換してください。
	シールドガスの放流が止まら	外部入力の設定 / 処置が間違って いる	内部機能 F29 ~ F32 の設定が正しいことを確認してください。 (3) 6.7.2.20 F29 ~ F32:外部入力端子の設定)
6	ない	外部入力の配線が断線 / 短絡して いる	外部入力端子台に接続している配線に異常がないことを 確認してください。 異常がある場合は、この配線を補修 / 交換してください。
7	溶接条件の設定は問題がない のに、アークが発生しない	トーチケーブルの接続が緩んでい る	トーチケーブルを確実に接続してください。
	(無負荷電圧が出ない)	トーチスイッチが故障している	トーチスイッチが正常に機能することを確認してください。
		自動機モードになっている	内部機能 F4 の設定が正しいことを確認してください。 (☞ 6.7.2.2 F4:自動 / 半自動モード)
8	電流値 / 電圧値の設定ができ ない	アナログリモコン(別売品)を接 続している	アナログリモコン(別売品)を接続している場合は、リ モコン側の設定が優先されます。
		エンコーダが故障している	プリント板 PCB9(LCD パネル)を交換する必要がありま す。販売店もしくは弊社営業センターまでご連絡くださ い。
9	「クレータ条件」メニューの 操作が利かない	内部機能 F45、F48、または F51 が「ON」に設定されている	これらの設定を「OFF」にしてください。
10	タッチパネルで溶接条件の設 定ができない / タッチパネルで溶接モードが 切り替わらない	タッチパネルの誤操作防止機能が 有効になっている (キーロック中)	「キーロック」を解除し、操作パネルの誤操作防止機能を 無効にしてください。 (☞ 5.4.2 操作パネルの誤操作防止)
		 溶接モードの選択が合っていない	ワイヤ径、ワイヤ材質、およびシールドガスの設定を確 認してください。
11	アークが不安定	ワイヤの不良、ワイヤ送給に異常 がある	ワイヤ、およびワイヤ送給に異常がないことを確認して ください。(☞ 5.1 溶接前の確認事項)
		電圧検出ケーブルが正しく接続さ れていない	電圧検出ケーブルが正しく接続されていることを確認してください。
		電圧検出ケーブルにノイズが侵入 している	アーク特性をプラスに調整してください。

第9章 トラブルシューティング

第9章

トラブルシューティング トラブルシューティング

No.	トラブルの現象	故障 / 異常原因	対処方法
12	ワイヤが送給されない(異常	ワイヤ送給装置の加圧ロールが外 れている	ワイヤ送給装置の加圧ロールを正しくセットし直してく ださい。(セット方法は、ワイヤ送給装置の取扱説明書を ご覧ください。)
		ワイヤ送給装置の配線に異常があ る	ワイヤ送給装置の配線に異常がないことを確認してくだ さい。
12	ブローホールが発生する	シールドガスが不良である	ガスボンベやガスホースに異常がないことを確認してく ださい。
13		溶接トーチのチップが摩耗してい る	チップを交換してください。
14	ロボット側のモニタで見る と、WCRの信号が出力され続 けている (WCRの信号とは、溶接電流 が流れているか否かをロボッ ト側と通信する信号です。)	溶接電源の WCR リレーが故障し ている	プリント板 PCB1(P30457P00)に実装されている WCR リレーを交換する必要があります。 販売店もしくは弊社営業センターまでご連絡ください。
15	パスワードを忘れてしまった	-	販売店もしくは弊社営業センターまでご連絡ください。
16	タッチパネルの画面が点滅 し、操作が利かなくなった	-	電源スイッチを OFF にし、初期化操作を行ってください。 (☞ 7.4 溶接条件と内部機能の初期化)

第10章 資料

本章では、溶接電源のパーツリスト、溶接条件を設定する際の参考資料、および溶接機の使用に関連する法規について 掲載します。

10.1 パーツリスト

本項では、溶接電源のパーツリストを掲載します。

• 部品をご注文の際は、溶接電源の機種名、交換部品の品名、および部品番号(部品番号がないものは仕様)を販売 店もしくは弊社営業センターにお伝えください。

なお、部品の最低供給年限については、溶接電源の製造後7年を目安にしています。ただし、他社からの購入部品 が供給不能となった場合には、その限りではありません。あらかじめご了承願います。

• 表中の符号は、電気接続図 / 部品配置図の符号を示します。

符号	部品番号	品名	仕様	所要量	備考
NF	100-3837	サーキットプロテクタ	CA3-X0-18-286-62B-C	1	
PL1	4600-341	パイロットランプ	N20010A7SW	1	
DR1	100-1409	ダイオードモジュール	MDS1001640L	1	
DR2,3	100-4648	ダイオードモジュール	MF300K06F2N	2	
DR4	100-2373	ダイオードモジュール	DSEI 2X101-12A	1	
TR1 \sim 4	100-4376	IGBT モジュール	2MBI150XAA065-50	4	生産時期により CM150DUS-12F を使用 しています
TR5,6	100-4086	IGBT モジュール	MG600U065TLC21	2	
CT1	4810-030	変流器	W-W03029 ROHS	1	
CT2	100-0956	ホール電流検出器	CS-40GEH	1	
T1	P30457B00	インバータトランス	P30457B00	1	
L1	P30457L00	入力リアクトル	P30457L00	1	
L2	P30457C00	DC リアクトル	P30457C00	1	
L3 ~ 5	100-2321	フェライトコア	TW70W(R311019)	3	
L6	100-1950	フェライトコア	TW70W(R402715)	1	
L7	100-4649	フェライトコア	E04RJ261328	1	
L8	100-2002	フェライトコア	SN-20 OR 23.5×9.5×12.6	1	
L9	100-4062	フェライトコア	E04RK122008	1	
L10	100-4649	フェライトコア	E04RJ261328	1	
L11	100-1950	フェライトコア	TW70W(R402715)	1	
L12	100-2321	フェライトコア	TW70W(R311019)	1	
THP1,2	4614-051	サーモスタット	67L090	1	
FM1, 2	100-3963	ファン	11938MA-24P-GU-D1	2	側面ファン
FM3	100-3964	ファン	11938KA-24M-AL-01	1	内部ファン
R1 ~ 3	100-1351	バリスタ	TND14V-471KB0LLAA0	3	
R4	100-1528	バリスタ	TND14V-911KB0LLAA0	1	
$R5 \sim 10$	100-0234	カーボン抵抗	RD20S 1kΩJ	6	
R11,12	100-4650	金属皮膜抵抗	RHPP200-3-1 5R J	2	
R13a,b	100-1431	メタルクラッド抵抗	W-W03823	2	
R14	100-4651	セメント抵抗	RX27-4V-20W-15 OHM-J	1	
R15	100-2222	セメント抵抗	RX27-4V-20W-2.2 OHM-J	1	
R16a,b	100-1432	メタルクラッド巻線抵抗	RE50W-470R-5%	2	
C1 ~ 4	100-3938	セラミックコンデンサ	CK45-E3DD222ZYGNA	4	
C5	100-1652	アルミ電解コンデンサ	VFL2G332YD094	1	
C6,7	100-1434	フィルムコンデンサ	FHC(180)2000V682J	2	
C8	4511-512	アルミ電解コンデンサ	LQA2C222MSMEZO	1	
CON1	100-1435	メタコンレセプタクル	DPC25-10BP	1	
CON2	4730-010	メタコンレセプタクル	DPC25-6BP-Z	1	
TM1	K5710C00	入力端子台	K5710C00	1	
TM2,3	100-1291	出力端子台	EDZ95b(B)	2	付属のキャップは不要
TM4	100-0940	外部入出力端子台	TB-1510	1	
TM5 - 34 7	4739-141	ターミナル	T-3 黒	1	
	4739-331	ターミナル クロ	T-375 12M/M	1	

符号	部品番号	品名	仕 様	所要量	備考
DCV1	K8212B00	定電圧電源	K8212B00	1	DC24V 出力
PCB1	P30457P00	プリント板	P30457P00	1	(**1)
	4341-206	リレー	G6A-274P DC24V	1	PCB1 搭載品
PCB2	P30457S00	プリント板	P30457S00	1	
PCB3	P30457V00	プリント板	P30457V00	1	
PCB4	P30458V00	プリント板	P30458V00	1	
PCB5	P30458U00	プリント板	P30458U00	1	
PCB6	P30457M00	プリント板	P30457M00	1	
PCB7	P30457Q00	プリント板	P30457Q00	1	
PCB8	P30457T00	プリント板	P30457T00	1	
PCB9	100-4653	プリント板	OTC-T070WTRZ2	1	
PCB10	P30457U00	プリント板	P30457U00	1	
1)	100-3887	モールドカバー	P30457G01	1	上側カバー(表示板付)
2	P30086G02	モールドカバー	P30457G02	1	下側カバー
3	P30457W02	操作パネルシート	P30457W02	1	
4	W-W03880	キャップ	W-W03880	1	P30457G01 に取付
5	100-1736	ハンドルカバー	899-35054-001	1	NF 用
6	4739-476	キャップ	W-W02814	2	CON1,2 用
7	100-4414	ツマミ	XN-23W	1	パラメータ調整ツマミ
8	K5710D01	入力端子台カバー	K5710D01	1	
9	W-W03591	入力ケーブル固定具	W-W03591	1	
(10)	P10565R02	ケーブルクランププレート	P10565R02	1	
(11)	W-W03784	出力端子カバー	W-W03784	1	
(12)	4739-474	膜付グロメット	W-W02805	4	
(13)	100-0201	固定キャスタ	420SR-RD50	4	
(14)	100-4656	左側板	P30457G04	1	
(15)	100-4657	右側板	P30457G06	1	
(16)	100-4658	上部カバー	P30457G07	1	
(17)	100-4659	外部接続端子カバー	P30457D03	1	

※1:プリント板 P30457P00 をご注文の際は、溶接電源背面の表示板(入力端子台下)に記載されているソフトウェアバージョン番号、および製造番号をお伝えください。なお、ソフトウェアバージョン番号および製造番号は操作パネルでも確認できます。(☞ 7.5 システム設定)

※2:ターミナル TM5 の仕様は、製造時期により異なります。取り付いているターミナルの形状を確認してください。

T-3黒 (4739-141)

T-375 12M/M (4739-331)

• アナログリモコン (K5804N00) パーツリスト (別売品)

第10章 資料 パーツリスト

符号	部品番号	品名	仕 様	所要量	備考
lset, Vset	4501-039	可変抵抗器	RV24YN20SB 5kΩ	2	
	100-0487	カーボン抵抗	RD20S 12ΩJ	1	
	4531-710	ダイオード	D1N60	2	
	100-2592	サージクランパ	1.5KE68CA	2	
INCH	4250-077	押しボタンスイッチ	A2A-4R	1	
	4735-013	ツマミ	K-2195 (中)	2	
CON2	4730-009	メタコンプラグ	DPC25-6A-1H-Z	1	
	3361-655	ユリヤネジ	N-3 M5L=10 (クロ)	1	
	4252-013	ロータリースイッチ	SRF-113-Z	1	
	K5804N01	リモートボックスフタ	K5804N01	1	200A 用
	K5804N02	リモートボックスフタ	K5804N02	1	350A, 500A 用
	4739-014	ドアラッチ	No.552	2	
	P6739K02	リモートボックスケース	P6739K02	1	
	100-3712	カーボン抵抗	CS1P 10Ω	1	

本項では、溶接電源の電気接続図と部品配置図を掲載します。

_{資料} 第10章

10.2.1 電気接続図

第10章 資料

第10章

資料 参考図面

10.2.2 部品配置図

10.3 溶接条件設定資料

本項では、溶接条件を設定する際の参考情報を掲載します。 なお、溶接ガイド機能を用いることで液晶パネルにて目安となる溶接条件を簡単に設定することができます。 (☞ 6.6.9 溶接ガイド 溶接ガイド)

10.3.1 溶接条件の変更ガイド

本項では、溶接条件が適正でない場合の症状例について掲載します。

不適正事項	症状
	 アーク長が長くなります。
ワイヤ突出長が長すぎる	 ビード幅が広くなります。
	 シールドが悪くなります。
ロイヤ空出長が短かすぎる	 アーク長が短くなります。
	 スパッタが発生します。
	 アーク長が長くなります。
溶接電圧が高すぎる	 ビード幅が広くなります。
	 溶け込み、余盛りが小さくなります。
※ 培雪 圧 が 任 す ギ ス	 ワイヤが母材に突っ込み、スパッタが発生します。
冶技电圧が低すとる	 ビード幅が狭くなります。
※ 按雪法 が 互 オ ギ ス	 ビード幅が広くなります。
冶技电加力向すとる	 溶け込み、余盛りが大きくなります。
※ 按 油 庇 が 油 オ ギ ろ	 ビード幅が狭くなります。
伯政処 反/) 近 9 さる	 溶け込み、余盛りが小さくなります。

10.3.2 溶接条件の設定サンプル

本項では、標準的な溶接条件の設定例を掲載します。 これらの値は参考値です。実際の溶接物の形状、および溶接姿勢に合わせた上で、適切な条件を見つけてください。

10.3.2.1 CO₂ 溶接条件例

水平すみ肉溶接条件例

板厚	脚長	ワイヤ径	電流	電圧	溶接速度	炭酸ガス流量
t(mm)	L (mm)	(mmΦ)	(A)	(V)	(cm/min)	(L/min)
1.2	2.5 ~ 3.0	0.9, 1.0	70~100	18~19	$50 \sim 60$	10 ~ 15
1.6	$2.5 \sim 3.0$	0.9 ~ 1.2	90~120	18~20	$50 \sim 60$	10~15
2.0	3.0 ~ 3.5	0.9 ~ 1.2	100 ~ 130	19~20	$50 \sim 60$	15 ~ 20
2.3	3.0 ~ 3.5	0.9 ~ 1.2	120~140	19~21	$50 \sim 60$	15 ~ 20
3.2	3.0 ~ 4.0	0.9 ~ 1.2	130 ~ 170	19~21	$45 \sim 55$	15 ~ 20
4.5	4.0 ~ 4.5	1.2	190 ~ 230	22~24	$45 \sim 55$	15 ~ 20
6.0	$5.0 \sim 6.0$	1.2	250 ~ 280	26 ~ 29	$40 \sim 50$	15 ~ 20
9.0	$6.0 \sim 7.0$	1.2	$280 \sim 300$	29~32	$35 \sim 40$	15 ~ 20
12.0	7.0 ~ 8.0	1.2	300 ~ 340	32 ~ 34	30~35	20~25

下向すみ肉溶接条件例

板厚 t(mm)	脚長 L (mm)	ワイヤ径 (mmΦ)	電流 (A)	電圧 (V)	溶接速度 (cm/min)	炭酸ガス流量 (L/min)
1.2	2.5 ~ 3.0	0.9, 1.0	70 ~ 100	18~19	$50 \sim 60$	10~15
1.6	2.5 ~ 3.0	0.9 ~ 1.2	90~120	18~20	$50 \sim 60$	10~15
2.0	3.0 ~ 3.5	0.9 ~ 1.2	100 ~ 130	19~20	$50 \sim 60$	15 ~ 20
2.3	3.0 ~ 3.5	0.9 ~ 1.2	120~140	19~21	$50 \sim 60$	15 ~ 20
3.2	3.0 ~ 4.0	0.9 ~ 1.2	130 ~ 170	20~22	$45 \sim 55$	15 ~ 20
4.5	4.0 ~ 4.5	1.2	$200 \sim 250$	23~26	$45 \sim 55$	15~20
6.0	$5.0 \sim 6.0$	1.2	$280 \sim 300$	29~32	$40 \sim 50$	15~20
9.0	6.0 ~ 8.0	1.2	300 ~ 350	32 ~ 34	$40 \sim 45$	15 ~ 20
12.0	10.0 ~ 12.0	1.2	320 ~ 350	33~36	$25 \sim 35$	20~25

|形突合せ溶接条件例(裏当て金なし)

板厚 t(mm)	ルート間隔 g (mm)	ワイヤ径 (mmΦ)	電流 (A)	電圧 (V)	溶接速度 (cm/min)	炭酸ガス流量 (L/min)	層数
1.2	0	0.9, 1.0	$70 \sim 80$	17~18	45 ~ 55	10	1
1.6	0	0.9, 1.0	80~100	18~19	$45 \sim 55$	10~15	1
2.0	0~0.5	0.9, 1.0	100~110	19~20	50 ~ 55	10~15	1
2.3	0.5 ~ 1.0	0.9 ~ 1.2	110~130	19~20	50 ~ 55	10~15	1
3.2	1.0 ~ 1.2	0.9 ~ 1.2	130~150	19~21	40 ~ 50	10~15	1
4.5	1.2 ~ 1.5	1.2	150 ~ 170	21~23	$40 \sim 50$	10 ~ 15	1
6.0	1.2 ~ 1.5	1.2	220 ~ 260	24 ~ 26	40 ~ 50	15 ~ 20	表1 裏1 ²
9.0	1.2 ~ 1.5	1.2	320~340	32~34	45 ~ 55	15 ~ 20	表1 裏1 ²

資料 第10章

V 形、X 形開先条件例

板厚 t(mm)	開先形状	ルート 間 隔 g (mm)	ルート面 h (mm)	ワイヤ径 (mmΦ)	電流 (A)	電圧 (V)	溶接速度 (cm/min)	炭酸ガス 流量 (L/min)		層数	τ					
			4~6	1.2	$300 \sim 350$	32 ~ 35	$30 \sim 40$	20 ~ 25		表						
		0~0.5			$300 \sim 350$	32 ~ 35	$45 \sim 50$	20~25		裏	_					
				1.6	$380 \sim 420$	$36 \sim 39$	$35 \sim 40$	$20 \sim 25$		表	1 4					
					380~420	36~39	$45 \sim 50$	20~25		裏	1					
	_√\$h)			1.2	$300 \sim 350$	32 ~ 35	$25 \sim 30$	20~25		表						
16		$0 \sim 0.5$	4~6	1.2	$300 \sim 350$	32 ~ 35	$30 \sim 35$	20~25		裏	2					
				1.6	$380 \sim 420$	36 ~ 39	$30 \sim 35$	20~25		表						
	5									1.0	$380 \sim 420$	36 ~ 39	$35 \sim 40$	20~25		裏
	t g g			-6	$300 \sim 350$	32 ~ 35	30~35	20~25		表	2					
16		0	1 - 6		$300 \sim 350$	32 ~ 35	30~35	20~25		裏						
10		0	4.00		380~420	36~39	$35 \sim 40$	20~25		表						
				1.0	380~420	36~39	$35 \sim 40$	20~25		裏	1					
19				1.6	$400 \sim 450$	36 ~ 42	$25 \sim 30$	20~25		表	2					
		0	50.7	1.0	$400 \sim 450$	36 ~ 42	$25 \sim 30$	20~25		裏	1 2					
		0	s∼7	1.6	$400 \sim 420$	36~39	$45 \sim 50$	20~25	1	表・	•					
							1.0	$400 \sim 420$	36~39	$35 \sim 40$	20~25	2	裏	4		
25		← 0	0 5 6 7	1.6	$400 \sim 420$	36 ~ 39	$40 \sim 45$	20~25	1	表・	4					
25		0	5.07	1.0	$420 \sim 450$	39 ~ 42	30~35	20~25	2	裏	4					

重ねすみ肉溶接条件例

板 厚 t(mm)	ワイヤ径 (mmΦ)	電 流 (A)	電圧 (V)	溶接速度 (cm/min)	ねらい位置	炭酸ガス流量 (L/min)
1.2	0.8 ~ 1.0	80~100	18~19	$45 \sim 55$	A	10~15
1.6	0.8 ~ 1.2	100 ~ 120	18~20	$45 \sim 55$	A	10~15
2.0	1.0 ~ 1.2	100 ~ 130	$18 \sim 20$	$45 \sim 55$	A または B	15 ~ 20
2.3	1.0 ~ 1.2	120~140	19 ~ 21	$45 \sim 50$	В	15 ~ 20
3.2	1.0 ~ 1.2	130~160	19 ~ 22	$45 \sim 50$	В	15 ~ 20
4.5	1.2	150 ~ 200	21~24	$40 \sim 45$	В	15 ~ 20

10.3.2.2 MAG ショートアーク溶接の設定例

- 材 ガ
- 質:軟 鋼 ス:Ar + CO₂ 混合ガス(10 ~ 15L/min)

継手形状	板厚 t(mm)	ワイヤ径 (mmΦ)	ギャップ (mm)	電流 (A)	電圧 (V)	溶接速度 (cm/min)
	1.0	0.8 ~ 1.0	0	$50 \sim 55$	13~15	$40 \sim 55$
	1.2	0.8 ~ 1.0	0	$60 \sim 70$	14~16	$30 \sim 50$
空 今日	1.6	0.8 ~ 1.0	0	100~110	16 ~ 17	$40 \sim 60$
70 C	2.3	0.9 ~ 1.2	0~1.0	110~120	17~18	$30 \sim 40$
	3.2	0.9 ~ 1.2	1.0 ~ 1.5	$120 \sim 140$	17~19	$25 \sim 30$
	4.0	0.9 ~ 1.2	1.5 ~ 2.0	150 ~ 170	18~21	$25 \sim 40$

10.4 関係法規(抜粋)

以下の法令、規則は改正されることがありますので、常に最新版を参照してください。

電気設備の技術基準の解釈	経済産業省 原子力安全・保安院 電力安全課
内線規程 JEAC8001-2016	社団法人 日本電気協会 需要設備専門部会編
労働安全衛生規則	厚生労働省令第80号
粉じん障害防止規則	厚生労働省令第58号
JIS アーク溶接機 JIS C 9300-1:2020	財団法人 日本規格協会
労働安全衛生法施行令(※1)	厚生労働省
特定化学物質障害予防規則(※1)	厚生労働省
作業環境測定法施行規則(※1)	厚生労働省

※1:溶接ヒュームの特定化学物質指定に関する法令改正の詳細については、各都道府県の労働局または労働基準監督署に お問い合わせください。

10.4.1 電気設備の技術基準の解釈

第17条 (接地工事の種類及び施設方法)より抜粋

D 種接地工事

接地抵抗値は、100Ω(低圧電路において、地絡を生じた場合に 0.5 秒以内に当該電路を自動的に遮断する装置を施設するときは、500Ω)以下であること。

C 種接地工事

接地抵抗値は、10 Ω (低圧電路において、地絡を生じた場合に 0.5 秒以内に当該電路を自動的に遮断する装置を施設するときは、500 Ω)以下であること。

第36条 (地絡遮断装置の施設)より抜粋

金属製外箱を有する使用電圧が 60V を超える低圧の機械器具に接続する電路には、電路に地絡を生じたときに自動 的に電路を遮断する装置を施設すること。

10.4.2 労働安全衛生規則

以下に抜粋した内容は、労働安全衛生法および労働安全衛生法施行令の規定に基づいています。

第36条 (特別教育を必要とする業務)より抜粋

法第五十九条第三項の厚生労働省令で定める危険又は有害な業務は次のとおりとする。

- 三 アーク溶接機を用いて行う金属の溶接、溶断等(以下[アーク溶接等]という。)の業務
- 第39条 (特別教育の細目)より抜粋

前二条及び第五百九十二条の七に定めるもののほか、第三十六条第一号から第十三号まで、第二十七号及び第三十 号から第三十六号までに掲げる業務に係る特別教育の実施について必要な事項は、厚生労働大臣が定める。

安全衛生特別教育規程より抜粋

労働安全衛生規則(昭和四十七年労働省令第三十二号)第三十九条の規程に基づき、安全衛生特別教育規程を次のように定め、昭和四十七年十月一日から適用する。

(アーク溶接等の業務に係る特別教育)

第四条 安衛則第三十六条第三号に掲げるアーク溶接等の業務に係る特別教育は、学科教育及び実技教育により行う ものとする。

2 前項の学科教育は、次の表の上欄に掲げる科目に応じ、それぞれ、同表の中欄に掲げる範囲について同表の下 欄に掲げる時間以上行うものとする(表)

科目	範囲	時間
アーク溶接等に関する知識	アーク溶接等の基礎理論 電気に関する基礎知識	一時間
アーク溶接装置に関する基礎知識	直流アーク溶接機 交流アーク溶接機 交流アーク溶接機用自動電撃防止装置 溶接棒等及び溶接棒等のホルダー、配線	三時間
アーク溶接等の作業の方法に関する知識	作業前の点検整備 溶接、溶断等の方法 溶接部の点検 作業後の処置 災害防止	六時間
関係法令	法令及び安衛則中の関係条項	一時間

3 第一項の実技教育は、アーク溶接装置の取扱い及びアーク溶接等の作業の方法について、十時間以上行うもの

関係法規(抜粋)

資料

第10章

とする。

第325条 (強烈な光線を発散する場所)より抜粋

事業者は、アーク溶接のアークその他強烈な光線を発散して危険のおそれのある場所については、これを区画しな ければならない。ただし、作業上やむを得ないときは、この限りでない。

2 事業者は、前項の場所については、適当な保護具を備えなければならない。

第333条 (漏電による感電の防止)より抜粋

事業者は、電動機を有する機械又は器具(以下「電動機械器具」という)で、対地電圧が150Vをこえる移動式若し くは可搬式のもの又は水等導電性の高い液体によって湿潤している場所その他鉄板上、鉄骨上、定盤上等導電性の 高い場所において使用する移動式若しくは可搬式のものについては、漏電による感電の危険を防止するため、当該 電動機械器具が接続される電路に、当該電路の定格に適合し、感度が良好であり、かつ、確実に作動する感電防止 用漏電しや断装置を接続しなければならない。

2 事業者は、前項に規定する措置を講ずることが困難なときは、電動機械器具の金属製外わく、電動機の金属製外 被等の金属部分を、次に定めるところにより接地して使用しなければならない。

- 接地極への接続は、次のいずれかの方法によること。

イー心を専用の接地線とする移動電線及び一端子を専用の接地端子とする接続器具を用いて接地極に接続する方法

ロ 移動電線に添えた接地線及び当該電動機械器具の電源コンセントに近接する箇所に設けられた接地端子を用いて 接地極に接続する方法

二前号イの方法によるときは、接地線と電路に接続する電線との混用及び接地端子と電路に接続する端子との混用 を防止するための措置を講ずること。

三接地極は、十分に地中に埋設する等の方法により、確実に大地と接続すること。

第 593 条 (呼吸用保護具等)より抜粋

事業者は、著しく暑熱又は寒冷な場所における業務、多量の高熱物体、低温物体又は有害物を取り扱う業務、有害 な光線にさらされる業務、ガス、蒸気又は粉じんを発散する有害な場所における業務、病原体による汚染のおそれ の著しい業務その他有害な業務においては、当該業務に従事する労働者に使用させるために、保護衣、保護眼鏡、呼 吸用保護具等適切な保護具を備えなければならない。

10.4.3 粉じん障害防止規則

第1条 (事業者の責務)より抜粋

事業者は、粉じんにさらされる労働者の健康障害を防止するため、設備、作業工程又は作業方法の改善、作業環境の整備等必要な措置を講ずるよう努めなければならない。

第2条 (定義等)より抜粋

粉じん作業、別表第一に掲げる作業のいずれかに該当するものをいう。

別表第一(第二条、第三条関係)

1~19,21~23・・・省略

20:屋内、坑内又はタンク、船舶、管、車両等の内部において、金属を溶断し、又はアークを用いてガウジングする作業 20の2:金属をアーク溶接する作業

10.4.4 特定化学物質障害予防規則(特化則)

第27条、第28条 (特定化学物質作業主任者の選任)より抜粋

事業者は、特定化学物質及び四アルキル鉛等作業主任者技能講習(特別有機溶剤業務に係る作業にあつては、有機溶 剤作業主任者技能講習)を修了した者のうちから、特定化学物質作業主任者を選任しなければならない。

第38条の21第5~10項 (有効な保護具の使用)より抜粋

第5項

事業者は、金属アーク溶接等作業に労働者を従事させるときは、当該労働者に有効な呼吸用保護具を使用させなければならない。

第7項

事業者は、前項の呼吸用保護具(面体を有するものに限る。)を使用させるときは、一年以内ごとに一回、定期に、 当該呼吸用保護具が適切に装着されていることを厚生労働大臣の定める方法により確認し、その結果を記録し、こ れを三年間保存しなければならない。

